Project Icon

moco

基于动量对比的无监督视觉表示学习

MoCo是一种创新的无监督视觉表示学习方法,利用动量对比在大规模未标注数据上进行预训练。该方法在ImageNet数据集上训练ResNet-50模型,无需标注即可学习出高质量的视觉特征。MoCo v2版本在原基础上进一步优化,线性分类准确率达67.5%。项目开源了PyTorch实现,支持分布式训练,并提供预训练权重。

MogaNet - 多阶门控聚合网络在计算机视觉领域的创新应用
GithubMogaNet人体姿态估计图像分类开源项目目标检测视频预测语义分割
MogaNet是一种创新的卷积神经网络架构,采用多阶门控聚合机制实现高效的上下文信息挖掘。这一设计在保持较低计算复杂度的同时,显著提升了模型性能。MogaNet在图像分类、目标检测、语义分割等多项计算机视觉任务中展现出优异的可扩展性和效率,达到了与当前最先进模型相当的水平。该项目开源了PyTorch实现代码和预训练模型,便于研究者进行进一步探索和应用。
Vim - 基于双向状态空间模型的高效视觉表示学习
GithubVision Mamba图像分类开源项目深度学习状态空间模型视觉表示学习
Vision Mamba是一种基于双向Mamba块的新型视觉主干网络。该模型通过位置嵌入和双向状态空间模型处理图像序列,在ImageNet分类、COCO目标检测和ADE20k语义分割等任务上表现优异。与DeiT等视觉Transformer相比,Vision Mamba不仅性能更高,还大幅提升了计算和内存效率。其在高分辨率图像特征提取方面的出色表现,使其有潜力成为新一代视觉基础模型的核心架构。
dinov2 - 通过无监督学习构建强大视觉特征的先进方法
DINOv2GithubVision Transformer开源项目自监督学习视觉特征计算机视觉
DINOv2是一种先进的无监督视觉特征学习方法,在1.42亿张未标注图像上预训练后生成高性能、鲁棒的通用视觉特征。这些特征可直接应用于多种计算机视觉任务,仅需简单线性分类器即可实现优异效果。DINOv2提供多种预训练模型,包括带寄存器的变体,在ImageNet等基准测试中表现卓越。
soft-moe-pytorch - PyTorch 实现的软专家混合模型框架
GithubPytorchSoft MoE专家混合开源项目深度学习神经网络
soft-moe-pytorch 项目实现了基于 PyTorch 的软专家混合 (Soft MoE) 模型。该模型支持非自回归编码器,可用于文本到图像等任务。项目特点包括灵活设置专家数量、动态分配插槽,以及与 Transformer 架构兼容。这一工具为深度学习研究和开发提供了高效、可扩展的 MoE 模型实现,有助于提升模型性能。
CoCa-pytorch - CoCa模型的PyTorch开源实现
CoCaGithubPytorch实现transformer架构图像文本模型对比学习开源项目
CoCa-pytorch项目提供了CoCa(Contrastive Captioners)模型的PyTorch实现。该项目将对比学习融入传统的编码器/解码器transformer,优化了图像到文本的转换。项目采用PaLM的transformer架构,包含单模态、多模态transformers和交叉注意力模块。这一实现为研究和开发图像-文本基础模型提供了有力工具。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
mobius - 领域无关去偏见扩散模型重塑图像生成
AI绘图GithubHuggingfaceMobius开源项目扩散模型模型表征重对齐领域无关去偏
Mobius扩散模型采用创新的构造性解构框架,实现领域无关的去偏见和表征重对齐。该模型在多样化风格和领域中展现卓越泛化能力,无需昂贵的从头预训练。Mobius在无偏见生成、泛化性能和微调效率方面超越现有模型,为图像生成技术树立新标准。
mobilenet_v2_1.0_224 - 轻量级移动设备图像分类神经网络MobileNet V2
GithubHuggingfaceImageNetMobileNet V2图像分类开源项目模型神经网络计算机视觉
MobileNet V2是一款针对移动设备优化的图像分类神经网络模型,在ImageNet-1k数据集上进行预训练。该模型以低延迟和低功耗著称,适用于资源受限的环境。MobileNet V2支持多种分辨率和深度配置,在模型大小、推理速度和准确性之间实现了良好平衡。除图像分类外,它还可应用于目标检测、特征嵌入和图像分割等计算机视觉任务,为移动端应用提供了versatile的解决方案。
SupContrast - 监督对比学习框架增强视觉表征
GithubSupContrast图像分类对比学习开源项目损失函数监督学习
SupContrast是一个开源的监督对比学习框架,致力于提升视觉表征学习效果。该项目实现了监督对比学习和SimCLR算法,在CIFAR数据集上展现出色性能。它提供简洁的损失函数实现,支持自定义数据集,并附有详细运行指南和可视化结果。在ImageNet上,SupContrast实现了79%以上的Top-1准确率。这一工具为计算机视觉领域的研究和应用提供了重要支持。
MambaVision - 高效且灵活的视觉骨干网络,适用于各种分辨率的图像处理
GithubHugging FaceMambaVision图像分类开源项目深度学习计算机视觉
MambaVision采用混合Mamba-Transformer架构,结合自注意力和混合块,实现了卓越的图像分类和特征提取效果。其创新的对称路径设计提升了全局上下文的建模能力,并提供多种预训练模型。MambaVision支持多种分辨率图像处理,适用于分类、检测和分割等任务。最新模型支持Hugging Face和pip包,详细信息见[官网](https://huggingface.co/collections/nvidia/mambavision-66943871a6b36c9e78b327d3)。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号