Project Icon

Phi-3-medium-4k-instruct-abliterated-v3

增强文本生成模型性能的正交化方法

采用正交化技术的Phi-3模型旨在减少拒绝响应,同时保持知识完整性。该方法通过权重调整消除拒绝特征,比传统微调更为精确高效。新版本Phi-3参考最新研究方法,减少错觉并提高模型稳定性。这一技术改进不仅是重要升级,也是未来深度学习模型优化的方向。

Llama-3.2-3B-Instruct-uncensored-GGUF - 3B参数指令微调语言模型的高效GGUF量化版本
GGUFGithubHuggingfaceLlama人工智能开源项目模型量化
Llama-3.2-3B-Instruct-uncensored模型的GGUF量化版本,提供从1.6GB到7.3GB不等的多种量化类型。量化后的模型大小显著减小,便于部署使用,同时尽可能保持原模型性能。项目包含详细的量化版本说明、使用指南和常见问题解答,有助于用户选择适合的版本。
pythia-410m-deduped - 专为语言模型可解释性研究设计的先进工具
GithubHuggingfacePythia人工智能开源项目机器学习模型自然语言处理语言模型
Pythia-410M-deduped是EleutherAI开发的语言模型系列之一,旨在推动可解释性研究。该模型在去重后的Pile数据集上训练,拥有3亿多参数,24层结构和1024维度。它提供多个训练检查点,便于研究模型行为和局限性。Pythia-410M-deduped使用Apache 2.0许可,主要面向科学研究,不适合直接部署应用。
SuperNova-Medius-GGUF - 多种量化方法提升模型性能与适配性
ARMGithubHuggingfaceRAMSuperNova-Medius开源项目性能模型量化
SuperNova-Medius-GGUF项目通过llama.cpp工具对SuperNova-Medius模型进行多种量化处理,是以多样化版本满足不同应用的需求。精细化量化过程依托imatrix选项,提供了多种质量和性能的选择。用户可以根据自身硬件环境,如ARM架构设备、低RAM或需最大化GPU VRAM使用的场景,选择相应版本。此外,项目为文件选择提供了详细指南,确保用户能够找到适合其系统性能的最佳模型版本。这些量化技术为不同硬件上的文本生成任务提供了广泛的支持。
LRV-Instruction - 通过稳健指令调优降低多模态模型幻觉风险
GPT4GithubLRV-InstructionMiniGPT4mplug-owl多模态模型开源项目
该项目通过稳健的指令调优,减少大规模多模态模型的幻觉现象,提升其在复杂视觉和语言任务中的表现。LRV-Instruction 数据集包含多种视觉和语言任务数据,通过 GPT-4 生成,提供正面和反面的指令示例,以提高模型的鲁棒性和准确性。最新的研究进展和更新内容不断推进多模态图表理解和图像上下文推理基准的发展,为相关领域提供重要的数据支持。
SciPhi-Mistral-7B-32k - 基于Mistral-7B-v0.1增强科学推理与教育能力的AI模型
GithubHuggingfaceSciPhi-Mistral-7B-32kTransformer大语言模型开源项目教育能力模型科学推理
SciPhi-Mistral-7B-32k是从Mistral-7B-v0.1微调而来的大型语言模型,通过四轮微调和超过十亿个token的数据集,实现了卓越的科学推理及教育能力。其特点包括采用变压器架构、组内查询注意力、滑窗注意力,并支持字节回退BPE分词器。SciPhi-Self-RAG-Mistral-7B-32k当前可用,具体细节可查看相关文档。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
v3_1_pt_ep1_sft_5_based_on_llama3_1_8b_final_data_20241019 - 探索先进的自然语言处理开源模型及其实际应用
GithubHuggingfacetransformers开源项目模型模型卡环境影响训练细节语言模型
了解先进自然语言处理开源模型的信息,包括用途、评估方法及风险提示。虽然详细信息未完全披露,但以上内容可为开发和应用提供重要参考。
LLaVA-pp - 结合先进模型的视觉能力扩展与演示
GithubHugging FaceLLaMA-3LLaVA++MBZUAIPhi-3开源项目
LLaVA-pp项目整合了Phi-3 Mini Instruct和LLaMA-3 Instruct模型,提升了视觉模型的能力。用户可通过Hugging Face Spaces和在线演示了解LLaMA-3-V和Phi-3-V的更新和结果。项目包含多种预训练及微调模型,支持学术任务和指令跟随应用。
NeuralLLaMa-3-8b-ORPO-v0.3 - 8B参数量文本生成模型在多任务中的优异表现
AI2推理挑战GithubHuggingfaceNeuralLLaMa-3-8b-ORPO-v0.3Open LLM排行榜准确率开源项目文本生成模型
NeuralLLaMa-3-8b-ORPO-v0.3是基于Meta Llama-3.1-8B-Instruct的一款文本生成模型,主要用于提升自然语言生成效率。此模型在AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA和Winogrande等数据集上表现良好,提供高达84.9%的正常化准确率。通过多数据集的支持与量化策略,NeuralLLaMa-3-8b-ORPO-v0.3在多种应用场景中展现出色的性能,适用于各类行业需求。
Meta-Llama-3.1-70B-Instruct-GPTQ-INT4 - INT4量化版提升多语言对话效率
GPTQGithubHuggingfaceMeta-Llama-3.1-70B-Instruct大语言模型开源项目推理模型量化
本项目展示了Meta Llama 3.1 70B Instruct模型的INT4量化版本。通过AutoGPTQ技术,将原FP16模型压缩至INT4精度,在维持性能的同时显著减少内存使用,仅需约35GB显存即可运行。该项目兼容多个推理框架,如Transformers、AutoGPTQ、TGI和vLLM,便于根据不同需求进行选择。项目还附有详细的量化复现指南,方便用户独立完成模型量化过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号