Project Icon

juice

综合机器学习框架集合 为开发者提供全面解决方案

Juice项目是一个综合性机器学习框架集合,包含juice主框架、coaster数学库、coaster-nn和coaster-blas组件、greenglas数据预处理框架及示例集。该项目提供完整的机器学习工具链,支持CUDA和OpenCL后端,并配备CLI工具运行示例。Juice旨在为开发者提供高效、灵活的机器学习解决方案,涵盖从数据预处理到模型部署的全流程。

Juice

This is the workspace project for

Please consult the individual README.md files for more information.

Juice Examples

CLI for running juice examples. More examples and benchmark tests can be found at the juice examples directory.

Install CLI

DISCLAIMER: Currently both CUDA and cuDNN are required for the examples to build.

Compile and call the build.

# install rust, if you need to
curl -sSf https://static.rust-lang.org/rustup.sh | sh
# download the code
git clone git@github.com:spearow/juice.git && cd juice/juice-examples
# build the binary
cargo build --release
# and you should see the CLI help page
../target/release/juice-examples --help
# which means, you can run the examples from the juice-examples README

Dependencies

Cap'n'Proto

capnproto is a data interchange format that is used to store and load networks with weights for Juice.

capnproto and capnproto-libs plus their development packages are the ones needed from your package manager.

Cuda

Getting the cuda libraries up poses to be the first road-block many users face.

To get things working one needs to set the following environment variables:

# examplary paths, unlikely to work for your local setup!
export CUDNN_INCLUDE_DIR=/opt/cuda/include
export CUDNN_LIB_DIR=/opt/cuda/targets/x86_64-linux/lib/
export CUBLAS_INCLUDE_DIR=/opt/cuda/include
export CUBLAS_LIB_DIR=/opt/cuda/targets/x86_64-linux/lib/

depending on your local installation setup.

The currently supported cuda version is cuda-11 (details in #114 and #115 )

Note that you need a capable nvidia device in order to run the cuda backend.

OpenCL

You need the apropriate loader and device libraries. Since the OpenCL backend is still WIP, this will be detailed at a later point of time.

BLAS

Blas is a linear algebra used by the native backend.

openblas or blas is required to be present. Choose explicitly via BLAS_VARIANT.

By default an attempt is made to resolve the library via pkg-config.

Overriding via

# examplary paths, unlikely to work for your local setup!
export BLAS_LIB_DIR=/opt/blas/lib64/
export BLAS_INCLUDE_DIR=/opt/blas/include/

is also supported.

Linkage for the blas library variant is determined by setting BLAS_STATIC to 1 or unsetting BLAS_STATIC.

ArchLinux users

ArchLinux openblas package doesn't include LAPACK symbols (see FS#66092), so if you try to use it, you'll get multiple cblas_* unresolved symbols.

Replace openblas with AUR's openblas-lapack package to fix.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号