Project Icon

DoppelGANger

高保真时间序列数据生成框架

DoppelGANger是一个基于生成对抗网络(GAN)的时间序列数据生成框架。它通过解决长期依赖性和复杂多维关系等挑战,在多个真实数据集上实现了比基准模型高43%的保真度。该框架为网络系统研究提供了一种共享高质量合成数据集的通用方法,有助于推动数据共享实践。DoppelGANger已获得多家公司采用,并提供开源代码实现。

AOT-GAN-for-Inpainting - 基于聚合上下文变换的高分辨率图像修复技术
AOT-GANGithub上下文转换图像修复开源项目生成对抗网络高分辨率
AOT-GAN for Inpainting项目提出了一种创新的图像修复模型,旨在解决高分辨率图像中大面积缺失区域的修复问题。该模型结合了聚合上下文变换(AOT)块和SoftGAN技术,分别增强了上下文推理能力和纹理合成质量。AOT块能够有效捕捉远距离上下文信息和丰富的特征模式,而SoftGAN则通过改进判别器训练,提高了真实和合成图像细节的识别能力。这种方法在面部、物体和场景图像的高质量修复上取得了显著成效。
Generative-AI - 多模态图像合成与编辑技术及其分类
Data ModalityGenerative AIGithubMultimodal Image Synthesis and EditingTaxonomyVisual AIGC开源项目
该项目附有一篇综述论文,全面分析了多模态图像合成与编辑(MISE)和视觉AIGC的发展情况,并根据数据模态和模型架构进行了分类研究。通过此项研究,科研人员和技术开发者可以深入了解神经渲染、扩散方法、自回归方法及对抗生成网络(GAN)等不同技术及其应用,帮助更好地掌握多模态图像合成技术的前沿进展与实际应用。
SpecVQGAN - 使用视觉提示生成高保真声音的方法
GithubSpecVQGANTransformer代码本声谱图开源项目训练模型
SpecVQGAN项目提出了一种利用视觉提示生成声音的方法。通过将训练数据集缩小到一组代表向量(代码本),这些代码本向量可被控地进行采样,从而根据视觉提示生成新声音。项目使用VQGAN的训练方法在频谱图上训练代码本,并通过GPT-2变体的transformer在视觉特征条件下自回归地采样代码本条目。这种方法可以生成长时间、相关且高保真的声音,并支持多种数据类别。
bigvgan_v2_44khz_128band_512x - 神经网络声码器支持多采样率和高倍上采样比音频生成
BigVGANGithubHuggingface开源项目模型深度学习神经声码器语音合成语音生成
BigVGAN-v2是一款神经网络声码器,支持44kHz采样率和512倍上采样比。它使用自定义CUDA内核加速推理,采用多尺度子带CQT判别器和梅尔频谱图损失训练。该模型在多语言语音、环境声音和乐器的大规模数据集上训练,提供多种音频配置的预训练检查点。BigVGAN-v2与Hugging Face Hub集成,提供便捷的使用方式和交互式演示。
DeSRA - GAN超分辨率模型伪影智能检测与消除
DeSRAGANGithub人工智能图像处理开源项目超分辨率
DeSRA项目开发了创新方法,用于检测和消除GAN实际场景超分辨率模型中的伪影。该方法能高效识别伪影区域,通过微调策略消除同类伪影,只需少量样本即可。这一技术突破缩小了超分辨率算法在实际应用中的差距,为图像质量提升开辟了新途径。
doppel-bot - AI聊天机器人模仿用户回复风格
DoppelBotGithubLLMModalSlack开源项目微调
DoppelBot是一个Slack应用,通过抓取目标用户的消息并微调大型语言模型来模仿其回复风格。项目采用无服务器架构,包含微调、推理和抓取功能。安装后,可使用简单命令训练和召唤机器人,实现个性化AI互动。
gpt2 - 大规模文本生成模型的创新特性
GPT-2GithubHuggingface偏见开源项目文本生成机器学习模型语言模型
这是一款基于Transformer架构的预训练模型,以因果语言建模为目标在大量英文数据上进行自监督学习。它专注于从给定提示生成文本,可用于直接文本生成或针对特定任务的微调。尽管展示了高质量文本生成的能力,该模型可能反映其训练数据中的偏见,使用时需谨慎。这一模型应用广泛,包括文本生成和特征提取等领域。
OpenDalleV1.1 - 超越SDXL性能的开源AI文生图模型
GithubHuggingfaceOpenDalleV1.1Stable Diffusion人工智能绘画图像生成开源项目模型深度学习
OpenDalleV1.1是一个开源AI图像生成模型,比SDXL具有更强的性能表现。模型在图像真实感和艺术风格方面表现突出,能够准确解析提示词并生成对应图像。基于独特的模型合并方法开发,仅限个人非商业使用,支持diffusers框架部署,通过推荐参数配置可生成细节丰富的图像。
AdversarialNetsPapers - 综合资源集合揭示生成对抗网络的应用与理论进展
Github卷积神经网络图像合成图像翻译开源项目生成对抗网络面部属性操作
AdversarialNetsPapers 作为一个致力于生成对抗网络(GANs)的论文与资源集,包括影像转换、面部属性操作等应用范畴以及理论研究和机器学习实践。项目自2014年以来,积累包含大量关键论文与对应代码,为研究者与开发者构建了一个深度学习、图像处理及生成模型的知识库。
musegan - 多轨乐器生成与伴奏的AI工具
GANGithubMuseGAN多轨道音乐开源项目深度学习音乐生成
MuseGAN项目致力于生成多轨乐器的复音音乐。通过使用Lakh Pianoroll Dataset进行训练,该模型可以从零开始生成音乐或为用户提供的轨道进行伴奏。最新版本使用3D卷积层处理时间结构,尽管网络规模较小,但可控性有所下降。项目支持PyTorch版本,并提供多个shell脚本用于实验管理和数据收集。生成样本存储为.npy、.png和.npz格式,可转换为MIDI文件进一步使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号