Project Icon

torch-scan

PyTorch模型分析和性能评估工具

torch-scan是一个专门用于PyTorch模型分析的开源工具。它提供详细的模型结构信息,包括参数数量、FLOPs、MACs和内存使用等指标。支持分析嵌套复杂架构,可估算卷积网络感受野。该工具帮助开发者深入了解和优化PyTorch模型,适用于模型分析和性能评估。

OpenNMT-py - 开源的神经机器翻译与大型语言模型框架
EoleGithubLLM支持Neural Machine TranslationOpenNMT-pyPyTorch开源项目
OpenNMT-py是基于PyTorch的开源神经机器翻译和语言模型框架,适用于研究和生产。支持大语言模型转换、量化以及多GPU并行。提供教程、文档和社区支持,适合翻译、总结等多种NLP任务。最新版本引入了多查询注意力机制和线性去偏等新功能。
EasyCV - 基于PyTorch的全能计算机视觉工具箱,支持自监督学习和Transformer模型
EasyCVGithubPyTorch图像分类开源项目目标检测自监督学习
EasyCV是基于PyTorch的全能计算机视觉工具箱,专注于自监督学习、Transformer模型和主要视觉任务,包括图像分类、度量学习、目标检测和姿态估计。该工具箱提供了最先进的自监督算法如SimCLR、MoCO V2、Swav、DINO和基于掩码图像建模的MAE。它拥有简单综合的推理接口,并支持多种预训练模型。EasyCV支持多GPU和多工作者训练,利用DALI优化数据处理,使用TorchAccelerator和fp16加速训练,并通过PAI-Blade优化推理性能。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
pytorch-hed - PyTorch重实现的全息嵌套边缘检测HED算法
GithubHEDPyTorch开源项目深度学习计算机视觉边缘检测
该项目是Holistically-Nested Edge Detection (HED)算法的PyTorch重新实现。项目提供命令行工具进行图像边缘检测,使用官方权重但在BSDS500数据集上ODS评分为0.774,略低于原始Caffe版本的0.780。项目包含使用说明、性能对比和引用信息,为研究和开发人员提供HED算法的实现参考。
scenic - 多模态视觉智能研究框架
GithubJAXScenicTransformer开源项目深度学习计算机视觉
Scenic是一个基于JAX的开源视觉智能研究框架,聚焦注意力机制模型。它提供轻量级共享库和完整项目实现,支持分类、分割、检测等任务,可处理图像、视频、音频等多模态数据。Scenic内置多个前沿模型和基线,有助于快速原型设计和大规模实验。
doctr-torch-parseq-multilingual-v1 - 多语言OCR解决方案,兼具TensorFlow 2和PyTorch兼容性
DoctrGithubHuggingfacePyTorchTensorFlow 2光学字符识别开源项目模型模型预测
该项目是一种多语言光学字符识别(OCR)工具,支持TensorFlow 2和PyTorch,提供了流畅的用户体验。开发者可通过Python代码方便地加载和预测模型,实现从文字检测到识别的完整流程,非常适合需要多语言处理的应用。
torchquantum - 快速可扩展的PyTorch量子计算框架
GPU加速GithubPyTorchTorchQuantum开源项目量子电路模拟量子计算
TorchQuantum是基于PyTorch的开源量子计算框架,支持多达30个量子比特的GPU加速模拟。它具有动态计算图、自动梯度计算和批处理模式等特性,适用于量子算法设计、参数化量子电路训练和量子机器学习研究。与同类框架相比,TorchQuantum在GPU支持和张量化处理方面表现出色。
pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
inseq - 基于Pytorch的序列生成模型解释性分析工具
GithubInseqPytorch序列生成开源项目模型解释集成渐变
Inseq是一个基于Pytorch的可定制工具包,专为序列生成模型的后验可解释性分析设计。它支持多种特性归因方法,可高效分析单例或整套数据集的各类模型,包括GPT-2。Inseq支持在Jupyter Notebook、浏览器和命令行中进行可视化,并提供多种后处理和归因映射合并功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号