Project Icon

Platypus2-7B

以指令微调提升语言理解的创新模型

Platypus2-7B是采用LLaMA2架构的指令微调模型,由Cole Hunter和Ariel Lee开发。该模型通过STEM和逻辑数据集优化语言理解,并在ARC、HellaSwag、MMLU和TruthfulQA任务中经过广泛评估。为确保最佳性能,建议在HF训练中将fp16设置为False,bf16为True。在应用该技术时需注意安全性,以避免潜在风险。有关更多信息,请访问其项目网页。该模型在多个任务中展示出色性能,并提醒用户在应用前进行详细的安全性测试。通过其创新的指令微调方法,Platypus2-7B在语言模型领域引入了新的思路。

Qwen2.5-14B-Instruct-bnb-4bit - 高效微调多语言模型,优化长文本生成
GithubHuggingfaceQwen2.5Unsloth多语言支持开源项目模型模型微调长文本支持
Qwen2.5模型利用Unsloth方法优化指令微调过程,节省70%的内存,支持多种模型如Llama 3.1和Gemma 2。同时,提供易用的Google Colab工具,支持多语言和长文本处理,适用于生成长达8000字符的内容,并集成到Transformers库中,便于部署应用。
Llama3.1-70B-Chinese-Chat - 中英双语优化的Llama3.1-70B指令微调模型
GithubHuggingfaceLlama3.1-70B-Chinese-Chat开源项目文本生成模型细致调整角色扮演语言模型
项目基于Meta-Llama-3.1-70B-Instruct模型,优化针对中英用户,支持角色扮演、函数调用和数学能力。模型使用超10万偏好对数据集训练,提供q3_k_m、q4_k_m、q8_0和f16 GGUF版本。使用ORPO算法进行全参数微调,并基于LLaMA-Factory框架。用户需升级transformers库以下载使用BF16模型,亦可使用GGUF模型进行多种方式推理。
Llama-2-70b-hf - Meta开发的70亿参数开源大语言模型 支持多样化自然语言处理任务
GithubHuggingfaceLLAMA 2人工智能大语言模型开源开源项目模型自然语言处理
Llama-2-70b-hf是Meta开发的70亿参数大语言模型,基于优化的Transformer架构,支持4k上下文长度。模型在2万亿token公开数据上预训练,通过监督微调和人类反馈强化学习实现对话能力。在多项基准测试中表现优异,适用于对话、问答、推理等自然语言处理任务。作为开源发布的基础模型,为学术研究和商业应用提供了有力支持。
LIMA2-7b-hf - Llama 2语言模型的功能概述与应用
GithubHuggingfaceLlama 2Meta大型语言模型安全性开源项目文本生成模型
Llama 2是由Meta推出的大型语言模型系列,具备7亿到70亿参数,专为对话场景设计。Llama 2在多项评测中表现优异,能够与闭源模型如ChatGPT媲美。该模型采用优化的transformer架构,通过监督微调和人类反馈的强化学习来提升效能。使用前需遵守Meta许可条款,支持用于英语的商业和研究。
Meta-Llama-3.1-8B - Unsloth技术加速大语言模型微调并显著降低资源消耗
GithubHuggingfaceUnsloth开源项目微调性能优化模型语言模型
Meta-Llama-3.1-8B项目采用Unsloth技术优化大语言模型微调过程。该技术可将Llama 3.1、Gemma 2和Mistral等模型的微调速度提升2-5倍,同时减少70%的内存占用。项目提供多个免费Google Colab笔记本,支持Llama-3 8b、Gemma 7b和Mistral 7b等主流模型的快速微调。这些笔记本设计简单直观,初学者只需添加数据集并运行,即可获得性能显著提升的模型。
Llama-2-7B-Chat-GPTQ - Meta Llama 2推出的开源7B参数对话模型量化版
GithubHuggingfaceLlama 2Meta人工智能大语言模型对话系统开源项目模型
Llama-2-7B-Chat-GPTQ是Meta发布的Llama 2对话模型的量化版本。该模型针对对话场景进行了优化,在多项基准测试中表现出色。它提供多种量化参数选项,可适应不同硬件环境。这个开源模型在性能上可与部分闭源商业模型相媲美,为开发者提供了强大的对话AI解决方案。
Orca-2-7b - 探索小型语言模型推理能力的新前沿
GithubHuggingfaceOrca 2内容安全合成数据开源项目推理能力模型研究用途
Orca 2是为研究目的而设计的小型语言模型,专注于推理任务,基于LLAMA-2微调,展示了通过复杂流程和合成数据提升模型能力的方法。适合研究界评估与构建先进语言模型,经过微调可在特定任务中表现优异。需注意模型的偏见、透明度及内容风险,建议配合Azure AI内容安全服务使用以确保输出安全。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
stanford_alpaca - 基于52K数据微调的7B LLaMA指令跟随模型
GithubLLaMA modelStanford Alpaca开源项目微调指令跟随模型数据生成
Stanford Alpaca项目提供了一个基于52K指令数据微调的7B LLaMA模型。该项目包含数据生成代码、模型微调代码和从权重差异恢复Alpaca-7B权重的代码。模型基于Self-Instruct技术生成的数据进行微调,仅限于研究用途。注意模型尚未经过安全性微调,使用时需谨慎。
internlm2-chat-7b - 70亿参数大模型实现20万字超长文本理解及多场景智能对话
GithubHuggingfaceInternLM2人工智能代码解释器大语言模型开源项目模型超长上下文
InternLM2-chat-7b作为书生·浦语第二代大模型的70亿参数版本,搭载20万字超长上下文理解技术,在复杂推理、数学运算、代码编程等核心任务上性能卓越。模型集成代码解释器和数据分析工具,通过增强型工具调用机制高效完成多步骤任务。在MMLU、AGIEval等主流评测基准上展现出同级别最优性能。该开源项目面向学术研究完全开放,同时提供免费商业授权渠道。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号