Project Icon

stories15M_MOE

TinyLLama多专家模型实现故事生成和Shakespeare风格文本

stories15M_MOE是一个实验性语言模型,由4个TinyLLama-15M专家模型组成,主要用于故事生成测试。模型包含一个经Shakespeare作品训练的LoRA适配器,可生成Shakespeare风格文本。尽管规模较小,但在特定领域文本生成方面展现了潜力,适合开发简单的故事讲述应用。当前阶段主要用于测试和研究,不推荐在生产环境中使用。

ChimeraLlama-3-8B-v3 - 结合多项模型技术的高效文本生成能力
ChimeraLlama-3-8B-v3GithubHuggingfaceLLM排行榜准确率开源项目文本生成模型模型融合
ChimeraLlama-3-8B-v3采用LazyMergekit技术,结合NousResearch、mlabonne、cognitivecomputations等7个模型,为使用者提供高效的文本生成服务。在多个数据集上的表现优异,在IFEval(0-shot)达到了44.08的严格准确率,在MMLU-PRO(5-shot)测试中获得29.65的准确率。其参数配置运用了int8_mask和float16的数据类型,保证高效运行和资源使用优化。利用transformers库可便捷调用和使用该模型,体验其创新文本生成能力。
Llama-3.2-3B-Instruct-uncensored-GGUF - 量化的语言模型版本,促进文本生成与信息获取
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored内幕交易开源项目文本生成模型量化
Llama-3.2-3B-Instruct-uncensored-GGUF项目是一个未过滤的量化语言模型版本,增强了文本生成的多样性和信息获取效率。通过llama.cpp的量化处理,该模型在保持高效性能的同时输出高质量响应。其特点包括在敏感话题上的信息提供更全面,响应拒绝次数少。支持研究和开发中的多场景应用,用户可以在相关平台上进行交互,实现从文本生成到信息提取的多领域应用。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
storyteller - 多模态AI故事生成器
GithubStoryTeller人工智能多模态开源项目故事生成自然语言处理
StoryTeller集成了GPT-3、Stable Diffusion和神经TTS技术,实现从文本生成到图像绘制再到声音合成的生动故事创造过程。适用于快速内容创作、教育娱乐等多场景。支持命令行和Python接口,可自定义参数。
Llama-3.2-1B - 多语言大型语言模型引领自然语言处理新纪元
GithubHuggingfaceLlama 3.2Meta多语言开源项目模型生成模型社区许可
Llama 3.2是由Meta开发的多语言大型语言模型,通过优化的Transformer架构和多语言对话定制,尤其适用于问答、总结等任务。支持8种语言,可进行超越官方语言的定制训练,以适应多种自然语言生成任务。此项目展示了语言模型在商业和研究应用中日益增长的重要性,提供高效的多语言文本生成能力,助力移动AI写作助手等智能应用的发展。用户需遵循Llama 3.2社区许可规定,确保使用场景的安全性和合规性。
Meta-Llama-3-8B-Instruct-llamafile - 增强多平台兼容性的文本生成模型
GithubHuggingfaceMeta Llama 3安全使用对话生成开源项目模型模型优化量化格式
该开发者Meta推出的Meta-Llama-3-8B-Instruct模型支持多操作系统,包括Linux、MacOS和Windows。模型经过量化优化,适应不同内存需求,适合用于聊天和文本生成等应用场景。该模型经过指令调优,提升了对话表现,适用于商业和研究用途。
CodeLlama-7b-hf - 大规模预训练模型助力代码生成与解析
GithubHuggingfaceLLAMA 2Python代码合成使用政策开源项目模型模型参数
Code Llama是一套从7亿到340亿参数的生成文本模型,设计用于代码合成与理解。这些模型基于Hugging Face Transformers架构,提供7B基础版本,具备代码补全和填充功能。针对Python的特定变体也已开发,以便提供更佳的技术支持。探索Code Llama可以如何为项目提供技术支持,满足多样的商业与研究需求。
deepseek-moe-16b-base - 采用稀疏混合专家架构的开源大语言模型
DeepSeek MoEGithubHuggingface人工智能代码生成开源项目机器学习模型模型训练
DeepSeek MoE 16B Base是一个基于稀疏混合专家(MoE)架构的开源大语言模型,支持商业应用。模型使用bfloat16格式,可通过Transformers库调用,擅长文本生成和补全。它采用查询-键值对映射的注意力机制,高效处理自然语言处理任务。该项目遵循MIT许可,提供详细文档和示例代码,便于开发者集成使用。
Llama-3.1-405B-Instruct-FP8 - Meta开发的多语言大规模语言模型,支持对话和文本生成
GithubHuggingfaceLlama 3.1人工智能元模型多语言大语言模型开源项目模型
Llama-3.1-405B-Instruct-FP8是Meta公司开发的多语言大规模语言模型。该模型支持8种语言的文本输入输出,具有128K的上下文长度,采用优化的Transformer架构。模型在多语言对话和文本生成任务中表现优异,适用于助手式聊天和自然语言处理等领域。Meta为该模型提供了商业许可证,允许在遵守使用政策的前提下应用于商业和研究用途。
SmolLM-1.7B - 小型化设计与处理能力兼备的语言模型,适用于多个应用场景
Cosmo-CorpusGithubHuggingfaceSmolLMTransformer开源项目模型生成模型语言模型
SmolLM系列语言模型基于Cosmo-Corpus高质量数据集开发,提供135M、360M和1.7B参数选项,表现出色的常识推理和广泛知识评估能力。模型通过多类型内容数据集训练,支持8位和bfloat16位精度,可在CPU和多GPU环境中运行。需注意,内容生成的准确性和一致性可能受限,仅供辅助使用。可通过HuggingFace平台便捷部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号