Project Icon

trienet

用于.NET的高性能前缀和子串搜索数据结构库

trienet是一个为.NET平台开发的字符串搜索库,提供多种Trie数据结构实现。该库支持前缀和子串搜索,适用于实现自动完成和智能感知等功能。trienet包含简单Trie、后缀Trie和Patricia Trie等变体,可根据具体需求选择合适的结构。在大数据集上,trienet比线性搜索更高效,适合开发需要快速字符串查找的应用程序。

Build status NuGet version

TrieNet - The library provides .NET Data Structures for Prefix String Search and Substring (Infix) Search to Implement Auto-completion and Intelli-sense.

usage

  nuget install TrieNet
using Gma.DataStructures.StringSearch;
	
...

var trie = new UkkonenTrie<int>(3);
//var trie = new SuffixTrie<int>(3);

trie.Add("hello", 1);
trie.Add("world", 2);
trie.Add("hell", 3);

var result = trie.Retrieve("hel");

updates

Added UkkonenTrie<T> which is a trie implementation using Ukkonen's algorithm. Finally I managed to port (largely rewritten) a java implementation of Generalized Suffix Tree using Ukkonen's algorithm by Alessandro Bahgat (THANKS!).

I have not made all measurements yet, but it occurs to have significatly imroved build-up and look-up times.

trienet

you liked it, you find it useful

so I migrated it from dying https://trienet.codeplex.com/

  nuget install TrieNet

and created a NuGet package.

motivation

If you are implementing a modern user friendly peace of software you will very probably need something like this:

Or this:

I have seen manyquestions about an efficient way of implementing a (prefix or infix) search over a key value pairs where keys are strings (for instance see:http://stackoverflow.com/questions/10472881/search-liststring-for-string-startswith).

So it depends:

  • If your data source is aSQL or some other indexed database holdig your data it makes sense to utilize it’s search capabilities and issue a query to find maching records.

  • If you have a small ammount of data, a linear scan will be probably the most efficient.

IEnumerable> keyValuePairs;
...
var result = keyValuePairs.Select(pair => pair.Key.Contains(searchString));
  • If you are seraching in a large set of key value records you may need a special data structure to perform your seach efficiently.

trie

There is a family of data structures reffered as Trie. In this post I want to focus on a c# implementations and usage of Trie data structures. If you want to find out more about the theory behind the data structure itself Google will be probably your best friend. In fact most of popular books on data structures and algorithms describe tries (see.: Advanced Data Structures by Peter Brass)

implementation

The only working .NET implementation I found so far was this one:http://geekyisawesome.blogspot.de/2010/07/c-trie.html

Having some concerns about interface usability, implementation details and performance I have decided to implement it from scratch.

My small library contains a bunch of trie data structures all having the same interface:

public interface ITrie
{
  IEnumerable Retrieve(string query);
  void Add(string key, TValue value);
}
ClassDescription
Triethe simple trie, allows only prefix search, like .Where(s => s.StartsWith(searchString))
SuffixTrieallows also infix search, like .Where(s => s.Contains(searchString))
PatriciaTriecompressed trie, more compact, a bit more efficient during look-up, but a quite slower durig build-up.
SuffixPatriciaTriethe same as PatriciaTrie, also enabling infix search.
ParallelTrievery primitively implemented parallel data structure which allows adding data and retriving results from different threads simultaneusly.

performance

Important: all diagrams are given in logarithmic scale on x-axis.

To answer the question about when to use trie vs. linear search beter I’v experimeted with real data. As you can see below using a trie data structure may already be reasonable after 10.000 records if you are expecting many queries on the same data set.

Look-up times on patricia are slightly better, advantages of patricia bacame more noticable if you work with strings having many repeating parts, like quelified names of classes in sourcecode files, namespaces, variable names etc. So if you are indexing source code or something similar it makes sense to use patricia …

… even if the build-up time of patricia is higher compared to the normal trie.

demo app

The app demonstrates indexing of large text files and look-up inside them. I have experimented with huge texts containing millions of words. Indexing took usually only several seconds and the look-up delay was still unnoticable for the user.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号