Project Icon

bert-large-cased-whole-word-masking-finetuned-squad

全词掩码BERT大型模型在SQuAD数据集上优化的问答系统

BERT-large-cased-whole-word-masking-finetuned-squad是一个基于全词掩码技术的大型语言模型。该模型包含24层、1024维隐藏层和16个注意力头,共3.36亿参数。在BookCorpus和Wikipedia数据集预训练后,模型在SQuAD数据集上进行了微调,专门用于问答任务。采用双向Transformer架构,通过掩码语言建模和下一句预测任务训练,能有效理解文本语义并回答上下文相关问题。

roberta-base-squad2 - 使用SQuAD 2.0数据集微调的RoBERTa英文抽取式问答模型
GithubHaystackHuggingfaceRoBERTaSQuAD开源项目模型自然语言处理问答系统
roberta-base-squad2是一个基于RoBERTa模型,在SQuAD 2.0数据集上微调的英文抽取式问答模型。它在SQuAD 2.0验证集上达到79.87%的精确匹配率和82.91%的F1分数。此模型能处理包括无答案问题在内的多种问答任务,适合构建高效问答系统。开发者可通过Haystack或Transformers库便捷地集成该模型进行问答应用开发。
electra_large_discriminator_squad2_512 - ELECTRA大型判别器模型在SQuAD2.0数据集上的问答系统微调
ELECTRAGithubHuggingface开源项目机器学习模型模型微调自然语言处理问答系统
electra_large_discriminator_squad2_512是基于ELECTRA大型判别器模型在SQuAD2.0数据集上微调的问答系统。该模型在精确匹配和F1分数上分别达到87.10%和89.98%。它使用PyTorch和Transformers库实现,最大序列长度为512,经3轮训练后展现出优秀的问答性能。该项目还提供了详细的训练脚本和系统环境信息,便于其他研究者复现和改进。
deberta-v3-large - 微软DeBERTa-v3-large模型提升自然语言理解性能
DeBERTaGithubHuggingface人工智能开源项目机器学习模型自然语言处理预训练模型
DeBERTa-v3-large是微软基于DeBERTa架构开发的自然语言处理模型。它采用ELECTRA式预训练和梯度解耦嵌入共享技术,在SQuAD 2.0和MNLI等任务上表现优异。模型包含24层结构,1024隐藏层大小,共304M参数,可处理复杂的自然语言理解任务。相比前代模型,DeBERTa-v3-large在下游任务性能上有显著提升。
deberta-v2-xlarge - 强大的NLU模型在多项任务中表现优异
DeBERTaGithubHuggingface人工智能开源项目机器学习模型模型性能自然语言处理
DeBERTa-v2-xlarge是一个基于解缠注意力机制和增强型掩码解码器的自然语言理解模型。该模型拥有24层结构、1536隐藏层大小,总参数量为900M,经160GB原始数据训练。在SQuAD、GLUE等多项NLU基准测试中,DeBERTa-v2-xlarge的表现超越了BERT和RoBERTa。模型在问答、文本分类等任务中展现出优异性能,为自然语言处理领域提供了新的研究方向。
bert-mini-finetune-question-detection - BERT-mini模型实现关键词与问题查询的精准分类
BERTGithubHaystackHuggingfaceKaggle开源项目查询分类模型神经搜索
该项目基于BERT-mini开发了一个用于区分关键词查询和问题/陈述查询的模型。在Haystack框架中,该模型实现了99.7%的测试准确率,能够准确将问题路由至Reader分支,提升结果精确度并降低计算开销。模型可通过简洁的Python代码轻松集成,适用于需要高效查询分类的神经搜索系统。
squeezebert-uncased - SqueezeBERT:提高NLP任务效率的高效开源模型
GithubHuggingfaceSqueezeBERT开源项目微调模型组卷积语言模型预训练
SqueezeBERT是一个专注于提高自然语言处理任务效率的无大小写敏感的预训练模型。其架构通过分组卷积替换点对点全连接层,使其在Google Pixel 3设备上运行速度比bert-base-uncased快4.3倍。利用Mask Language Model和Sentence Order Prediction对模型进行了预训练,所使用的数据集包括BookCorpus和English Wikipedia。尽管模型尚未微调,但SqueezeBERT为文本分类任务奠定了坚实基础,建议使用squeezebert-mnli-headless作为起点。
roberta-base-squad2-distilled - 蒸馏版RoBERTa模型在SQuAD 2.0达到84% F1分数
GithubHuggingfaceroberta-base-squad2-distilled开源项目机器学习模型深度学习自然语言处理问答系统
基于RoBERTa-base架构开发的问答模型,通过知识蒸馏技术从roberta-large-squad2模型中提取核心能力。经SQuAD 2.0数据集训练后,在验证集上取得84.01 F1分数和80.86精确匹配分数。该模型支持Haystack框架集成,可用于构建实用的问答系统。
multi-qa-distilbert-cos-v1 - 基于215M问答对训练的高性能语义搜索模型
GithubHuggingfacesentence-transformers多任务学习开源项目模型自然语言处理语义搜索问答系统
multi-qa-distilbert-cos-v1是一个基于sentence-transformers的语义搜索模型,能将文本映射到768维向量空间。该模型利用WikiAnswers、PAQ和Stack Exchange等多个数据集中的215M个问答对进行训练,可高效编码查询和文档并计算相似度。这使其成为实现准确语义搜索的理想选择,适用于各类信息检索任务。
tinyroberta-squad2 - 经过蒸馏优化的快速问答模型,运行速度提升一倍
GithubHuggingfacetinyroberta-squad2开源项目数据提取机器学习模型语言模型问答系统
tinyroberta-squad2是一个基于SQuAD 2.0数据集训练的轻量级问答模型。通过知识蒸馏技术,模型在保持原有精确匹配率78.86%和F1分数82.04%的同时,将运行速度提升一倍。模型支持Haystack和Transformers框架,可用于构建文本问答系统。
deberta-base - DeBERTa模型提升自然语言理解性能
DeBERTaGithubHuggingface开源项目微软模型注意力机制自然语言处理预训练模型
DeBERTa是一个改进BERT和RoBERTa模型的开源项目,通过解耦注意力和增强掩码解码器实现性能提升。该模型在SQuAD和MNLI等自然语言理解任务中表现优异,展现出在问答和推理方面的卓越能力。DeBERTa使用80GB训练数据,在多数NLU任务中超越了BERT和RoBERTa的表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号