Project Icon

mctx

高效JAX实现的蒙特卡洛树搜索库

Mctx是一个基于JAX的蒙特卡洛树搜索库,实现了AlphaZero和MuZero等算法。该库支持JIT编译和并行批处理,以提高计算效率。Mctx平衡了性能和易用性,为研究人员提供了探索搜索型强化学习算法的便利工具。它包含通用搜索函数和具体策略实现,用户只需提供学习到的环境模型组件即可使用。

dynamax - JAX驱动的概率状态空间模型库
GithubJAX开源项目概率模型状态空间模型隐马尔可夫模型高斯状态空间模型
Dynamax是一个利用JAX开发的概率状态空间模型库,包含隐马尔可夫模型和线性高斯状态空间模型等。该库提供低级推理算法和面向对象接口,与JAX生态系统兼容。Dynamax支持状态估计、参数估计、在线滤波、离线平滑和未来预测等功能。库中包含丰富示例和文档,便于使用和学习。
evosax - 基于JAX的高性能进化策略框架
GithubJAXevosax优化算法开源项目机器学习进化策略
evosax是基于JAX的进化策略框架,通过XLA编译和自动向量化/并行化技术实现大规模进化策略的高效计算。它支持CMA-ES、OpenAI-ES等多种经典和现代神经进化算法,采用ask-evaluate-tell API设计。evosax兼容JAX的jit、vmap和lax.scan,可扩展至不同硬件加速器。该框架为进化计算研究和应用提供了高性能、灵活的工具。
sbx - Jax加持的Stable-Baselines3强化学习库
GithubStable Baselines Jax开源项目强化学习机器学习算法实现
SBX是Stable-Baselines3的Jax实现版本,集成了SAC、TQC、PPO等多种先进强化学习算法。它与SB3保持相同API,可与RL Zoo无缝对接,并提供详细使用示例。SBX为复杂环境和任务提供高效、可靠的强化学习实现。
optax - JAX生态系统中的高效梯度处理与优化框架
GithubJAXOptax优化器开源项目梯度处理深度学习
Optax是JAX生态系统中的梯度处理和优化框架。它提供了经过严格测试的高效核心组件,支持研究人员灵活组合低级模块以构建自定义优化器。该库强调模块化设计,重视代码可读性和结构化,便于匹配标准优化方程。Optax实现了多种主流优化算法和损失函数,为机器学习研究和快速原型开发提供了有力支持。
learned_optimization - 基于JAX的元学习优化器研究框架
GithubJAXlearned_optimization优化器元学习开源项目机器学习
learned_optimization是一个研究代码库,主要用于学习型优化器的训练、设计、评估和应用。该项目实现了多种优化器和训练算法,包括手工设计的优化器、学习型优化器、元训练任务以及ES、PES和截断反向传播等外部训练方法。项目提供了详细的文档和教程,包括Colab笔记本,方便用户快速入门。learned_optimization适用于元学习和动态系统训练的研究,为相关领域提供了功能丰富的工具。
flashbax - JAX强化学习高效体验回放缓冲库
FlashbaxGithubJAX开源项目强化学习深度学习经验回放缓冲区
Flashbax是一个为JAX设计的高效体验回放缓冲库,适用于强化学习算法。它提供平坦缓冲、轨迹缓冲及其优先级变体等多种缓冲类型,特点是高效内存使用、易于集成到编译函数中,并支持优先级采样。Flashbax还具有Vault功能,可将大型缓冲区保存到磁盘。这个简单灵活的框架适用于学术研究、工业应用和个人项目中的体验回放处理。
pgx - JAX原生并行游戏模拟器库用于强化学习研究
GithubJAXPgx并行计算开源项目强化学习游戏模拟器
Pgx是一个基于JAX的游戏模拟器库,专注于离散状态空间的强化学习研究。该库支持多种经典和现代棋牌游戏,包括国际象棋、围棋、将棋等。Pgx利用GPU/TPU实现高效并行计算,提供丰富的游戏环境和SVG可视化功能。其兼容PettingZoo API,方便研究人员进行实验。Pgx的设计旨在为强化学习研究提供高性能、多样化的仿真环境。
axlearn - 支持构建大规模深度学习模型的高效工具库
AXLearnGithubJAXXLA开源项目机器学习深度学习
AXLearn是一个基于JAX和XLA的深度学习库,支持大规模模型的构建、迭代和维护。该库允许用户通过配置系统从可重用模块中组合模型,并兼容Flax和Hugging Face transformers等库。AXLearn能够高效地在众多加速器上训练数百亿参数的模型,涵盖自然语言处理、计算机视觉和语音识别等领域,还支持在公共云上运行并提供作业和数据管理工具。了解更多详情,请参阅其核心组件和设计文档。
evojax - 基于JAX的高性能神经进化工具包
EvoJAXGithubJAX开源项目机器学习硬件加速神经进化
EvoJAX是基于JAX库开发的神经进化工具包,支持在多个TPU/GPU上并行运行神经网络。通过在NumPy中实现进化算法、神经网络和任务,并即时编译到加速器上运行,EvoJAX显著提升了神经进化算法的性能。该工具包提供了多个示例,涵盖监督学习、强化学习和生成艺术等领域,展示了如何在几分钟内完成原本需要数小时或数天的进化实验。EvoJAX为研究人员提供了一个高效、灵活的神经进化开发平台。
optimistix - JAX生态系统中的高效非线性求解器
GithubJAXOptimistixPython库开源项目数值优化非线性求解器
Optimistix是一个基于JAX的非线性求解器库,专门用于根查找、最小化、不动点和最小二乘问题。该库提供可互操作的求解器和模块化优化器,支持PyTree状态,并与Optax兼容。Optimistix具有快速编译和运行时间,充分利用JAX的自动微分、自动并行和GPU/TPU支持等特性,为科学计算和机器学习领域提供高效工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号