Project Icon

syn-rep-learn

探索合成图像在视觉表示学习中的应用

Syn-Rep-Learn 项目研究合成图像在视觉表示学习中的应用。该项目包括三个主要研究方向:StableRep 探索文本到图像模型生成的合成图像在视觉表示学习中的作用,Scaling 分析合成图像在模型训练中的扩展规律,SynCLR 比较从模型和实际数据学习视觉的效果。这些研究为计算机视觉和机器学习领域提供了新的视角。

generative-models - SV4D与SV3D一类的创新模型
GithubSDXL-TurboSV3DSV4D开源项目热门稳定AI视频合成
Generative Models项目展示了多个创新模型如SV4D与SV3D,专注于视频到4D扩散建模和图像到视频的多视角合成,旨在提供高分辨率和时间连贯性的研究工具。最新技术报告和视频概览现已发布,支持通过简单的脚本和快速入门指南直接体验模型效果,适用于研究及教育用途。
solo-learn - 使用自监督学习进行无监督视觉表征的方法与技巧
GithubPyTorch Lightningsolo-learn开源项目无监督自监督学习视觉表示学习
solo-learn库基于PyTorch Lightning,提供多种自监督方法用于无监督视觉表征学习。该库包含全面的训练技巧和多种数据处理、评估方式,以提高训练效果和可重复性。其主要特点有快速的数据处理、自定义模型检查点、线上和线下的K-NN评估。库内包含灵活的数据增强、可视化功能,并不断更新方法和改进教程,使模型训练和调试更加高效简便。
continual-learning - PyTorch 在三种不同场景中实现各种持续学习方法
Continual LearningGithubNeurIPSPyTorchSynaptic Intelligenceincremental learning开源项目
此项目实现了在增量学习场景中的PyTorch深度神经网络实验,支持学术设置下的分类问题,且可进行更加灵活的无任务增量学习实验。项目提供了演示脚本和详细的安装指导,适合多种经典方法的性能对比和自定义实验。
StableSR - 通过扩散模型实现实际应用中的图像超分辨率
GithubHugging FaceStableSR图像超分辨率开源项目扩散模型模型训练
StableSR项目采用扩散模型,提高了真实世界场景中的图像超分辨率效果。最新更新包括对SD-Turbo的支持以及与ComfyUI和Hugging Face平台的集成。用户可以通过各种平台体验和测试该项目的功能。项目提供了详细的文档、代码示例和训练脚本,已被IJCV期刊接受,并在多个公开数据集中展示了其性能和效果。
learn-generative-ai - 将生成式AI技术应用于实际项目的课程
GenEngGenerative AIGithubGoogle CloudMicrosoft AzureOpenAI API开源项目
本课程帮助学员了解如何将生成式AI技术应用于实际项目,涵盖从云平台注册到生成式AI模型的集成与优化的全过程。内容包括微软Azure和Google Cloud的AI服务注册、生成技术工程(GenEng)的实践技巧,以及利用LangChain、Pinecone等开源工具开发和部署大型语言模型(LLM)。适合开发者、数据科学家和对生成式AI技术有兴趣的学习者。
deep-learning-roadmap - 为开发者和研究人员提供的从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域深度学习的综合资源,
Github卷积神经网络图像识别开源项目强化学习深度学习生成模型
为开发者和研究人员提供深度学习的综合资源,从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域。借助本平台,您可以迅速找到所需资源,掌握最前沿的深度学习技术。
Replicate - 一行代码在云端运行和调优开源机器学习模型
AI工具AI模型Replicate云API开源自动化
Replicate提供API云服务,让用户运行和微调开源机器学习模型,只需一行代码即可部署自定义模型。平台支持多种功能,包括图像生成、文本生成、音乐生成、语音生成和图像修复。Replicate旨在将AI技术从理论研究推广到实际应用,用户仅需为实际使用的计算资源付费,平台会根据流量自动调整计算资源,确保高效且经济地满足需求。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
epiCRealism - Stable Diffusion模型实现真实感图像生成
AI绘图GithubHuggingFaceHuggingfaceStable Diffusion开源项目文本生成图像机器学习模型模型
epiCRealism是一个基于Stable Diffusion的开源模型,专注于生成高质量真实感图像。该模型支持多种场景创作,包括人像、风景和幻想题材,能够呈现细腻的细节和逼真效果。epiCRealism易于集成到各类图像生成项目中,为创作者和开发者提供了实现视觉创意的有力工具。
AISP - 深度学习应用于低级别计算机视觉与成像技术
AI Image Signal ProcessingComputational PhotographyGithubRAW图像处理图像增强多镜头散景效果开源项目
AISP项目聚焦于低级别计算机视觉和成像的深度学习应用,涵盖RAW图像处理、RAW重建与合成、学习型图像信号处理(ISP)、图像增强与恢复(如去噪和去模糊),以及多镜头散景效果渲染。项目亮点包括高效的散景效果渲染、适用于智能手机的实时感知图像增强、结合模型和数据驱动的ISP设计,以及AIM 2022 RAW重建挑战的解决方案。该项目定期更新,保持领域的前沿进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号