Project Icon

torchsde

提供GPU支持的随机微分方程求解器

这个库提供了支持GPU和高效反向传播的随机微分方程(SDE)求解器。其使用Python和PyTorch开发,安装方便,并附有丰富的示例。用户可以通过简单的代码示例快速入门,并通过文档进一步学习。除了基础功能外,还包括潜在SDE和GAN中的SDE等高级应用示例。适用于在高性能计算环境中执行复杂SDE模型的研究人员和开发者。

diffrax - JAX 自动微分与 GPU 支持的数值微分方程解析工具
CDEDiffraxGithubJAXODESDE开源项目
Diffrax 是基于 JAX 的数值微分方程解析库,适用于常微分方程、随机微分方程和受控微分方程的求解。其特点包括多种解析器选择(如 Tsit5、Dopri8、辛解析器、隐式解析器)、使用 PyTree 作为状态存储、支持稠密解和多种反向传播方法,并支持神经微分方程。兼容 Python 3.9+、JAX 0.4.13+ 和 Equinox 0.10.11+。
DiffEqFlux.jl - 将微分方程与机器学习结合的Julia科学计算库
DiffEqFlux.jlGithub开源项目微分方程机器学习神经网络科学机器学习
DiffEqFlux.jl是一个Julia库,旨在将微分方程与机器学习相结合。该项目基于DifferentialEquations.jl和Lux.jl,主要用于科学机器学习研究,尤其是神经微分方程领域。DiffEqFlux.jl提供了多种神经网络层,包括神经常微分方程、神经随机微分方程等,并支持高阶、自适应、隐式和GPU加速等计算方法。这个库为研究人员和开发者提供了一个探索连续时间机器学习模型的工具。
stable-baselines3 - 增强型PyTorch强化学习算法,实现可靠性与自定义支持
GithubPyTorchRL算法Stable Baselines3开源项目强化学习稳定基线
实现可靠的PyTorch强化学习算法,方便研究和工业用户复制和优化新思路。支持自定义环境与策略,提供统一接口,适合项目开发和性能对比。涵盖A2C、PPO、DQN等算法,包含迁移指南和在线文档,适用于有强化学习基础的用户。
automatic - 稳定扩散和其他基于扩散的生成图像模型的高级实现
GithubSD.NextStable Diffusion多平台开源项目扩展功能模型支持
该项目提供了多种后端和用户界面、高级扩展功能,支持多种扩散模型并具有跨平台兼容性。包括文本、图像和视频处理的内置控制,优化处理性能,支持最新的torch技术。具有企业级日志记录和现代化UI,兼容Windows、Linux、MacOS等系统,支持nVidia、AMD和IntelArc等硬件平台。自动更新与依赖管理功能简化了安装和更新过程,确保在多种使用场景下性能最佳。
autonomous-learning-library - PyTorch深度强化学习库助力智能代理开发
GithubPyTorch开源项目智能体深度强化学习算法实现自主学习库
autonomous-learning-library是基于PyTorch的深度强化学习库,为快速构建和评估智能代理提供丰富组件。库中包含灵活的函数近似API、多种内存缓冲区和环境接口,并实现了A2C、DQN、PPO等主流算法。支持Atari、经典控制和机器人仿真等环境,集成Tensorboard等工具便于实验监控。该库特别强调模块化设计,便于研究人员快速实现和测试新想法。同时提供完整文档和示例项目,降低了强化学习研究的入门门槛。
executorch - 移动和边缘设备上高效运行PyTorch模型的解决方案
ExecuTorchGithubPyTorch开源项目推理能力模型部署边缘设备
ExecuTorch 提供端到端解决方案,实现移动和边缘设备上的推理能力,涵盖穿戴设备、嵌入式设备和微控制器。作为 PyTorch Edge 生态系统的一部分,ExecuTorch 通过轻量级运行时,利用硬件能力(如 CPU、NPU 和 DSP),高效地将 PyTorch 模型部署到多种平台。其主要优势包括:广泛的兼容性、开发效率和出色的用户体验。欲了解更多技术细节和教程,请访问文档网站获取最新版本。
gemma_pytorch - Gemma模型的官方PyTorch实现及多平台推理支持
AI模型GemmaGithubPyTorch开源项目机器学习自然语言处理
gemma_pytorch项目是Gemma模型的官方PyTorch实现,支持CPU、GPU和TPU多平台推理。项目提供PyTorch和PyTorch/XLA两种实现,涵盖2B、7B、9B和27B等多个模型变体及量化版本。通过Docker可快速部署环境并进行推理。项目还包含最新的Gemma v2和CodeGemma模型支持,为用户提供全面的Gemma模型应用方案。
dgl - 图深度学习框架加速图神经网络应用与研究
DGLGithub分布式训练图神经网络大规模图开源项目深度学习
DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。
ai-edge-torch - PyTorch模型转TensorFlow Lite的开源解决方案
AI Edge TorchGithubPyTorchTensorFlow Lite开源项目模型转换移动设备部署
ai-edge-torch是一个开源Python库,用于将PyTorch模型转换为TensorFlow Lite格式。它支持在Android、iOS和IoT设备上本地运行模型,提供广泛的CPU支持和初步的GPU、NPU支持。该项目还包含生成式API,用于优化大型语言模型在设备端的性能。ai-edge-torch与PyTorch紧密集成,为边缘AI开发提供了实用的工具。
tch-rs - Rust语言的PyTorch C++ API接口
GithubPyTorchRustlibtorchnn::Moduletch-rs开源项目
tch-rs是Rust语言对PyTorch C++ API的绑定,通过简洁的封装实现高效的深度学习模型训练和推理。支持系统全局libtorch安装、手动安装和Python PyTorch安装,兼容CUDA并支持静态链接。提供详细的安装说明和丰富的示例代码,包括基础张量操作、梯度下降训练、神经网络构建和迁移学习等,适合不同水平的开发者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号