Project Icon

bert_uncased_L-4_H-256_A-4

精简BERT模型系列适用于计算资源受限场景

bert_uncased_L-4_H-256_A-4是BERT模型系列中的一款,专为计算资源受限环境设计。该模型保留了标准BERT架构和训练目标,但规模更小。它可进行常规微调,在知识蒸馏中表现尤佳。此项目旨在支持资源有限的机构开展研究,并鼓励探索创新方向,而非单纯扩大模型规模。

stsb-bert-tiny-onnx - 基于BERT的轻量级文本向量化模型
GithubHuggingfacesentence-transformers开源项目文本嵌入模型模型训练自然语言处理语义相似度
这是一个轻量级的文本向量化模型,基于sentence-transformers框架开发。模型可将文本转换为128维向量表示,主要应用于文本聚类和语义搜索。支持通过sentence-transformers和HuggingFace两种方式调用,提供完整的模型评估数据。
distilbert-base-uncased - Habana Gaudi处理器的DistilBERT训练配置方案
DistilBERTGithubHPUHabanaHuggingface开源项目模型模型训练深度学习
这是一个用于Habana Gaudi处理器(HPU)的DistilBERT基础模型配置文件,集成了AdamW实现、梯度裁剪和混合精度训练功能。借助Optimum Habana接口实现模型在HPU设备上的训练和推理,支持问答等任务处理,可使用bf16混合精度进行训练
bert-medium-mnli - Pytorch平台上的MNLI任务BERT预训练模型
BERTGithubHuggingfaceMNLIPytorch开源项目模型论文预训练模型
本项目提供基于Pytorch、从Tensorflow检查点转换而来的BERT预训练模型,专门用于MNLI任务。此BERT变体在Google官方库的基础上,经过四轮训练,在MNLI和MNLI-mm测试中表现分别为75.86%和77.03%。项目着重展示紧凑模型在预训练中的有效性,更多信息及原始实现可访问相关GitHub库,重点在于轻量化处理及自然语言推理的应用潜力。结合最新研究成果,此预训练模型为自然语言理解提供了高效解决方案,显著改善文本分类性能。
distilbart-cnn-12-6 - BART模型压缩版本实现快速高效的文本摘要
BARTGithubHuggingface开源项目性能评估文本摘要模型模型压缩自然语言处理
distilbart-cnn-12-6是BART模型的压缩版本,专注于文本摘要任务。该模型通过减少参数量和优化推理时间,在保持高性能的同时提高了效率。与原始BART模型相比,distilbart-cnn-12-6在Rouge-2和Rouge-L评估指标上表现相当,且推理速度提升了1.24倍。这使得该模型特别适合需要快速生成高质量摘要的应用场景。
bert-base-turkish-128k-uncased - 土耳其BERTurk无标记语言模型
BERTurkGithubHuggingface土耳其语开源项目数据库机器学习模型自然语言处理
土耳其BERTurk模型由德国巴伐利亚州立图书馆的MDZ团队开发,并得到土耳其NLP社区的支持。此无标记BERT模型使用包含土耳其语OSCAR语料库、维基百科、OPUS语料库及Kemal Oflazer提供的语料进行训练,总语料量为35GB。模型在Google的TPU v3-8上通过TensorFlow Research Cloud训练了200万步,词汇量为128k,目前支持PyTorch-Transformers。
paraphrase-TinyBERT-L6-v2 - 轻量级句子嵌入模型支持语义搜索与文本聚类
GithubHuggingfaceTinyBERTsentence-transformers句子嵌入开源项目模型自然语言处理语义搜索
paraphrase-TinyBERT-L6-v2是基于sentence-transformers的句子嵌入模型,将句子和段落映射到768维密集向量空间。模型采用轻量级架构,主要应用于语义搜索和文本聚类。支持通过sentence-transformers或HuggingFace Transformers库进行调用,适用于计算资源受限的应用场景。
nomic-bert-2048 - 预训练BERT模型实现2048序列长度的上下文理解
BERTGithubHuggingfacenomic-bert-2048开源项目机器学习模型自然语言处理预训练模型
nomic-bert-2048模型通过Wikipedia和BookCorpus数据集训练,采用改进的位置编码技术,支持2048长度的文本序列处理。在GLUE基准评测中展现出与传统BERT相当的性能,同时具备更强的长文本理解能力。该模型兼容标准BERT分词系统,适用于文本补全和分类等自然语言处理任务。
bert-base-german-cased - 高性能德语BERT模型助力自然语言处理应用
BERTGithubHugging FaceHuggingface开源项目德语模型模型深度学习自然语言处理
此德语BERT模型由巴伐利亚州立图书馆MDZ团队开发,基于维基百科、EU Bookshop等多源语料库训练而成。模型包含23.5亿个词元,提供大小写敏感和不敏感版本,支持PyTorch-Transformers框架。它适用于各类德语自然语言处理任务,在Hugging Face模型库开源,并获得Google TensorFlow Research Cloud支持。
fast-bert - 快速训练和部署BERT与XLNet文本分类模型的深度学习库
Fast-BertGithub开源项目文本分类深度学习自然语言处理预训练模型
fast-bert是一个深度学习库,用于训练和部署基于BERT和XLNet的文本分类模型。它支持多类和多标签分类,提供数据处理、模型训练、参数调优和部署功能。该库集成了LAMB优化器和学习率查找器,旨在简化最新自然语言处理技术的应用过程。fast-bert适用于各类文本分类任务,能够帮助开发者快速构建高性能模型。
mMiniLMv2-L12-H384-distilled-from-XLMR-Large - 轻量级多语言自然语言处理模型
GithubHuggingfaceMicrosoftMiniLMv2多语言模型开源项目机器学习模型自然语言处理
mMiniLMv2-L12-H384-distilled-from-XLMR-Large是一个基于Microsoft UniLM项目的多语言自然语言处理模型。该模型通过知识蒸馏技术从XLM-R大型模型中提取知识,在维持高性能的同时大幅缩小了模型体积。作为一个轻量级模型,它能够适应文本分类、问答系统和序列标注等多种NLP任务,尤其适合在计算资源有限的环境中使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号