Project Icon

ddpm-celebahq-256

高效的无条件图像生成与渐进解压的新型扩散模型

本项目使用去噪扩散概率模型,实现了高质量的图像合成,借鉴了不平衡热力学,创新性地结合了变分界限和去噪评分匹配,并通过Langevin动力学实现渐进的解压缩。模型在CIFAR10数据集上取得了9.46的Inception得分和3.17的最新FID得分,在256x256 LSUN上样本质量与ProgressiveGAN相近。推理中可使用离散噪声调度器如ddpm、ddim或pndm,ddim和pndm在速度和质量上表现出色。项目支持用户自主训练模型,并提供官方示例用于推理和训练。

ddpm-ema-celebahq-256 - 无条件图像生成的高效去噪扩散模型
CIFAR10DDPMGithubHuggingfaceProgressiveGAN噪声调度器图像合成开源项目模型
项目通过去噪扩散概率模型实现高质量无条件图像生成,结合无平衡态热力学概念,在CIFAR10和256x256 LSUN数据集上取得了优异的Inception和FID评分。用户可以灵活选择噪声调度器以平衡生成质量与速度,该模型也支持渐进式无损压缩,作为自动回归解码的推广。详情请参照官方推理与训练示例。
ddpm-ema-church-256 - DDPM模型在图像合成中的应用与性能分析
Denoising Diffusion Probabilistic ModelsGithubHuggingface噪声调度器图像合成开源项目无条件生成模型深度学习
ddpm-ema-church-256项目采用DDPM模型进行图像合成,结合扩散概率模型与Langevin动态,取得CIFAR10数据集Inception分数9.46和FID分数3.17。支持DDPM、DDIM、PNDM调度器推理,实现质量与速度平衡,并提供预训练管道以生成高质量图像。项目为图像生成与压缩提供了创新思路。
ddpm-cifar10-32 - 扩散概率模型在CIFAR10数据集上的图像生成应用
DDPMGithubHuggingface人工智能图像生成开源项目扩散模型模型深度学习
该项目实现了基于扩散概率模型的图像生成。模型利用非平衡热力学原理,在CIFAR10数据集上达到9.46的Inception分数和3.17的FID分数。项目支持DDPM、DDIM和PNDM等多种噪声调度器,可平衡生成质量和推理速度。开发者可使用预训练模型进行推理或自行训练新模型。
scoresdeve-ema-celeba-64 - 无条件图像生成的高效DiffusionPipeline
AI绘图DiffusersGithubHuggingfaceunconditional-image-generation图像生成开源项目模型模型推理
该项目通过diffusers库的DiffusionPipeline实现无条件图像生成,使用eurecom-ds/celeba数据集,并兼容CUDA设备,提供了加载预训练模型和生成图像的高效方案。模型通过固定种子实现一致的推理输出,适用于AI研究和开发。用户可以自定义推理步骤,满足不同场景下的图像生成需求,拓展计算机视觉应用。
DMD2 - 改进分布匹配蒸馏的快速图像合成技术
AI绘图DMD2Github图像生成开源项目文本生成图像模型蒸馏
DMD2是一种改进的分布匹配蒸馏技术,用于快速图像合成。通过消除回归损失、集成GAN损失和支持多步采样,该技术显著提升了图像生成的质量和效率。在ImageNet-64x64和COCO 2014数据集上,DMD2的FID评分超越原始模型,同时将推理成本降低500倍。此外,DMD2还能生成百万像素级图像,在少步方法中展现出卓越的视觉效果。
PIDM - 人像图像生成技术,支持姿态和外观定制
本项目采用去噪扩散模型实现高质量人像图像生成,并支持姿态和外观控制。经过在DeepFashion数据集的训练,该方法可在5天内利用多GPU实现高精度样本生成。提供预训练模型下载和详细的训练与推理指南,支持自定义数据集。实验比较显示,该模型在多种先进方法中表现优异。相关代码和生成结果可在GitHub及Google Colab中体验。
LCM_Dreamshaper_v7 - 基于潜在一致性模型的高效图像生成技术
AI绘图DiffusersGithubHuggingfaceLatent Consistency Models图像生成开源项目模型深度学习
LCM_Dreamshaper_v7是一种基于潜在一致性模型的文本到图像生成技术。该模型通过将分类器无关引导蒸馏到输入中,实现了在极短时间内生成高质量图像。它仅需4步推理即可生成768x768分辨率的图像,显著提高了生成效率。用户可通过Hugging Face Spaces在线体验,或使用Diffusers库在本地运行。LCM_Dreamshaper_v7为快速、高质量的图像生成提供了新的解决方案。
sdxl-vae - 优化自动编码器提升图像生成细节
GithubHuggingfaceStable DiffusionVAE图像生成开源项目扩散模型模型自编码器
SDXL-VAE项目为SDXL模型提供了优化版变分自动编码器。通过增大批量大小和采用指数移动平均,新autoencoder在所有重建指标上超越原始模型。它易于集成到diffusers工作流中,提升生成图像的局部高频细节。在COCO 2017数据集评估中,SDXL-VAE在rFID、PSNR、SSIM等指标上均优于原始VAE,显著改善了图像重建质量。
denoising-diffusion-pytorch - 生成模型新方法:Pytorch中的Denoising Diffusion
Denoising Diffusion Probabilistic ModelGithubLangevin采样Pytorch开源项目扩散模型生成建模
Denoising Diffusion Probabilistic Model在Pytorch中的实现,通过去噪得分匹配估计数据分布梯度,并使用Langevin采样生成样本。这种方法可能成为GANs的有力竞争者。项目支持多GPU训练,提供详细的安装和使用指南,是研究人员和开发者的高效工具,支持1D序列数据和图像数据的生成和训练。
diffae - 基于扩散模型的自编码器框架实现图像生成与编辑
Diffusion AutoencodersGithub图像处理开源项目深度学习生成模型计算机视觉
diffae项目实现了基于扩散模型的自编码器框架,用于高质量图像的生成和编辑。该项目提供多个预训练模型,支持FFHQ、LSUN等数据集,实现了无条件生成、图像操作和插值等功能。项目包含使用说明、模型检查点和针对不同数据集的训练脚本,为图像生成和编辑研究提供了完整的工具链。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号