Project Icon

owlv2-base-patch16-finetuned

介绍OWLv2模型在零样本物体检测中的应用与发展

OWLv2模型是用于零样本物体检测的一个创新模型,使用CLIP作为多模态基础,同时采用ViT型Transformer以提取视觉特征,并通过因果语言模型获取文本特征。此模型的最大特点是其开放词汇分类功能,通过将固定分类层权重替换为文本模型中的类别名称嵌入实现。在常见检测数据集上,CLIP从头训练并微调,以学习精确的对象检测方法。此工具为AI研究人员提供了在计算机视觉领域探索鲁棒性、泛化和其他能力的机会。

vit_base_patch32_clip_384.openai_ft_in12k_in1k - 采用ViT技术的视觉Transformer模型
Fine-tuningGithubHuggingfaceVision Transformertimm图像分类开源项目模型预训练
这款视觉Transformer图像分类模型由OpenAI基于WIT-400M数据集使用CLIP技术预训练,并经过ImageNet-12k和ImageNet-1k数据集微调。作为一种强大的图像分类和嵌入模型,其参数量达88.3M,计算量为12.7 GMACs,设计用于384x384图像。支持通过`timm`库接口调用,满足多种视觉任务需求,在图像识别和分析领域表现出稳定性能。
CLIPSelf - 视觉Transformer自蒸馏实现开放词汇密集预测
CLIPSelfCOCOGithub密集预测开放词汇开源项目视觉Transformer
CLIPSelf项目提出创新自蒸馏方法,使视觉Transformer能进行开放词汇密集预测。该方法利用模型自身知识蒸馏,无需标注数据,提升了目标检测和实例分割等任务性能。项目开源代码和模型,提供详细训练测试说明,为计算机视觉研究提供重要资源。
siglip-base-patch16-256 - 改进CLIP的多模态预训练模型SigLIP
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一个基于CLIP改进的多模态预训练模型。它使用Sigmoid损失函数,在WebLI数据集上以256x256分辨率训练。相比CLIP,SigLIP在小批量和大规模批处理中都表现更好,适用于零样本图像分类和图像-文本检索任务。模型在多个基准测试中超越了CLIP,为图像-文本预训练领域带来了新进展。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
vit_base_patch16_224.orig_in21k_ft_in1k - 基于ImageNet大规模数据集的Vision Transformer模型
GithubHuggingfaceImageNetPyTorchVision Transformertimm图像分类开源项目模型
该Vision Transformer模型经过ImageNet-21k数据集预训练并在ImageNet-1k上微调,采用86.6M参数,适用于224x224图像的分类与特征提取。最初由论文作者在JAX上训练,并由Ross Wightman移植到PyTorch环境,可应用于图像分类和嵌入场景。
CLIP - CLIP是一种在各种(图像、文本)对上训练的神经网络
CLIPGithubPyTorch图像识别开源项目模型训练自然语言处理
CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。
llava-onevision-qwen2-0.5b-ov-hf - 推动单图、多图和视频理解的多模态大语言模型
GithubHuggingfaceLLaVA-Onevision图像理解多模态语言模型开源项目模型视频理解计算机视觉
LLaVA-Onevision是基于Qwen2的多模态大语言模型,通过微调GPT生成的多模态指令数据训练而成。作为首个同时推动单图、多图和视频场景性能边界的模型,它展现出强大的视频理解和跨场景能力,实现了从图像到视频的任务迁移。该模型支持多图像和多提示生成,为多样化的视觉理解任务提供了灵活解决方案。
siglip-so400m-patch14-384 - SigLIP模型应用sigmoid损失函数提升多模态处理能力
GithubHuggingfaceSigLIPWebLI数据集图像分类多模态模型开源项目模型零样本学习
SigLIP模型基于WebLi数据集在384x384分辨率下预训练,采用SoViT-400m架构。通过sigmoid损失函数优化CLIP模型,在零样本图像分类和图像文本检索任务中表现优异。该模型可处理更大批量,同时在小批量下也有出色表现。经16个TPU-v4芯片3天训练,为多模态任务奠定了坚实基础。
siglip-large-patch16-256 - SigLIP模型采用优化损失函数实现图像文本多模态任务
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是CLIP模型的改进版本,使用sigmoid损失函数进行语言-图像预训练。该模型在WebLI数据集上以256x256分辨率预训练,适用于零样本图像分类和图像-文本检索任务。通过优化损失函数,SigLIP实现了更高性能和更大批量规模。模型支持原始使用和pipeline API调用,在多项评估中展现出优于CLIP的表现。SigLIP为图像-文本多模态任务提供了新的解决方案。
Ovis1.6-Gemma2-9B - Ovis1.6-Gemma2-9B开源多模态大语言模型的嵌入对齐解决方案
GithubHuggingfaceOvis1.6transformers图像处理多模态大语言模型开源项目模型
Ovis1.6-Gemma2-9B是一个开源的多模态大语言模型,致力于视觉与文本嵌入的高效对齐。相比Ovis1.5,它在图像处理分辨率、数据集规模与质量上都有所提升,并通过DPO训练提高总性能。该模型在OpenCompass基准测试中展现了优异表现,支持图像和文本的多模态输入处理。更多使用指导与代码示例请访问其GitHub页面。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号