Project Icon

paxml

基于Jax的高效机器学习实验配置和运行框架

Paxml是一个基于Jax的开源框架,致力于机器学习实验的配置与运行。该框架支持云TPU VM快速部署,同时提供PyPI和GitHub的稳定及开发版本下载。Paxml还包含丰富的文档资源和Jupyter Notebook教程,支持GPU加速,并可广泛适用于不同开发者的需求,是推动机器学习实验项目高效发展的优选工具。

accelerate - 简化多设备PyTorch训练的框架
AccelerateGithubPyTorch分布式训练开源项目混合精度设备管理
Accelerate是一个轻量级PyTorch训练框架,允许在CPU、GPU、TPU等多种设备上运行原生PyTorch脚本。它自动处理设备分配和混合精度训练,简化了分布式训练流程。研究人员和开发者可专注于模型开发,无需关注底层实现细节,从而加速AI模型的训练和部署。
plynx - 开源实验管理与数据工作流平台 助力数据科学研究
GithubPLynx可视化编辑器实验复现工作流管理开源项目数据处理平台
PLynx是一个开源的实验管理和数据工作流平台,适用于多个领域。该平台提供交互式工作流编辑器、自定义操作、进度监控和结果预览功能。PLynx采用可扩展架构,支持多种数据存储方案,适合管理各类数据科学实验和工作流。这个平台可以帮助研究人员和数据科学团队轻松管理、复制和追踪实验,提高工作效率和实验可重复性。
PiPPy - PyTorch模型自动化管道并行工具
GithubPiPPyPyTorchpipeline parallelism并行计算开源项目模型扩展
PiPPy是一个为PyTorch模型提供自动化管道并行功能的开源工具。它通过自动拆分模型代码和处理复杂拓扑结构,简化了管道并行的实现过程。PiPPy支持跨主机并行、与其他并行方案结合,以及多种调度策略。该工具能够帮助研究人员和开发者在不大幅修改原有代码的情况下,实现PyTorch模型的高效扩展。
pyprobml - 提供Python 3代码,用于复现《概率机器学习:入门》和《概率机器学习:高级主题》书中的图表
GithubPythonnotebookspyprobml图像重现开源项目机器学习
pyprobml项目提供Python 3代码,用于复现《概率机器学习:入门》和《概率机器学习:高级主题》书中的图表。该项目采用numpy、scipy、matplotlib、sklearn等标准库,以及JAX、Tensorflow和Torch等深度学习框架。用户可在本地运行或通过Colab使用,适合需要高性能计算的用户也支持Google Cloud Platform。本项目目前处于维护模式,有意贡献者可查看项目官网的贡献指南。
pennylane - 跨平台量子计算与机器学习Python库
GithubPennyLane开源项目自动微分量子化学量子机器学习量子计算
PennyLane是一个跨平台的Python库,专注于量子计算、量子机器学习和量子化学。集成了PyTorch、TensorFlow、JAX和NumPy等流行框架,支持量子硬件上的机器学习。支持即时代码编译和多种量子后端,提供自动微分功能,并包括量子模拟器和优化工具,便于快速原型设计。
ipex-llm - 在Intel CPU和GPU上运行大型语言模型(LLM)的高性能库
AIGithubIPEX-LLMLLM运行库PyTorch开源项目英特尔
IPEX-LLM是专为Intel CPU和GPU设计的PyTorch库,能高效运行多种大型语言模型如LLaMA2和Mistral,确保极低延迟。支持最新技术如Microsoft的GraphRAG和多模态模型,及英特尔新型NPU。提供一体化易用性并针对多GPU优化,包括实时演示和详尽的性能基准。
JaxoAI - 综合AI工具平台 快速生成多类型内容
AI工具JaxoAI内容生成图像生成聊天机器人
JaxoAI集成20多种AI工具,包括文章生成、图像创作、代码编写和聊天机器人等功能。平台支持多语言,提供安全支付和客户支持。用户可通过简单操作快速生成高质量内容,有效提升工作效率。作为综合AI工具平台,JaxoAI为用户提供功能丰富、易用性高的AI内容生成服务。
optuna - 自动化机器学习超参数优化框架
GithubOptunaPython开源框架开源项目机器学习超参数优化
Optuna是一个面向机器学习的开源超参数优化框架。它采用define-by-run风格API,特点是轻量级、通用性强和平台无关。Optuna支持Python式搜索空间定义、高效优化算法、易于并行化和快速可视化。框架可处理多目标优化、约束优化和分布式优化等任务,适用于Python 3.7+版本,并集成多个第三方库。
equinox - 强大且易用的JAX兼容神经网络库
EquinoxGithubJAXPyTree开源项目神经网络转换API
Equinox是一款专为JAX设计的神经网络库,拥有类似PyTorch的语法。该库支持过滤API和PyTree操作,并兼容JAX及其生态系统中的所有工具。对于新手用户,推荐使用MNIST卷积神经网络示例,简化模型构建过程。Equinox还提供运行时错误处理等高级功能。
XNNPACK - 多平台优化的神经网络推理引擎 支持移动和嵌入式系统
GithubXNNPACK开源项目深度学习框架神经网络推理移动平台优化算子支持
XNNPACK是一个用于加速高级机器学习框架的神经网络推理引擎。它支持ARM、x86、WebAssembly和RISC-V等多种平台,提供低级性能原语,优化TensorFlow Lite、PyTorch等框架的运行效率。XNNPACK实现了丰富的神经网络操作符,在移动设备和嵌入式系统上表现出色,能高效运行各代MobileNet模型。在Pixel 3a上,XNNPACK能在44毫秒内完成FP32 MobileNet v3 Large的单线程推理,展现了其卓越的性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号