Project Icon

siglip-base-patch16-256-multilingual

基于Sigmoid损失函数的多语言视觉语言模型

SigLIP是一个基于CLIP架构的多语言视觉语言模型,通过Sigmoid损失函数优化训练效果。模型在WebLI数据集上以256x256分辨率预训练,实现零样本图像分类和图文检索功能。相比CLIP模型,在批量处理和整体性能上都有提升。模型经过16个TPU-v4芯片训练,支持多语言处理,主要应用于图像分类和跨模态检索任务。

fashion-clip - 专为时尚领域优化的对比语言视觉学习模型
CLIPFashionCLIPGithubHugging Face开源项目时尚行业模型
FashionCLIP是一个为时尚行业优化的CLIP模型,用于提升商品检索、分类和时尚分析的表现。通过超过70万对图像和文本数据进行微调,FashionCLIP在零样本场景下表现出色。更新版FashionCLIP 2.0采用更多训练数据,显著提高了FMNIST、KAGL和DEEP数据集的性能。项目提供开源代码和模型权重,可在Hugging Face上获取,并支持多种API和教程便于上手。
ULIP - 多模态预训练框架实现3D数据理解
3D理解GithubULIP多模态预训练开源项目点云分类零样本分类
ULIP是一种多模态预训练框架,集成了语言、图像和点云数据以增强3D理解能力。该框架适用于多种3D骨干网络,如Pointnet2和PointBERT等,无需增加处理延迟。ULIP-2在此基础上进行了扩展,提高了预训练的可扩展性。项目开源了预训练模型、数据集和使用指南,为3D数据分析奠定了基础。
VisualGLM-6B - 一个具备处理图像、中文和英文的能力的开源多模态对话语言模型
GithubVisualGLM-6B图像描述多模态对话模型开源开源项目微调
VisualGLM-6B是一个开源多模态对话语言模型,具备处理图像、中文和英文的能力。该模型继承自强大的ChatGLM-6B基础,增添了6.2亿参数,整合了先进的BLIP2-Qformer技术,达到了语言和视觉数据的高效融合。模型总参数量为7.8亿,展现在多个核心多模态任务上的卓越效能。针对各种应用场景均进行了优化,支持在消费级显卡上运行,降低了使用门槛,拓展了其在学术研究和实务应用中的潜力。
ViTamin - 推动计算机视觉进入新时代的可扩展视觉语言模型
GithubViTamin图像处理开源项目深度学习视觉语言模型计算机视觉
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
pixel - 像素编码语言模型,无需固定词汇表实现多语言处理
BERTGithubPIXELVision Transformer图像编码开源项目语言模型
PIXEL是一个将文本渲染为图像进行语言处理的模型,消除了固定词汇表的需求。在同样的数据上,PIXEL在非拉丁脚本的语法和语义处理上优于BERT。PIXEL由文本渲染器、编码器和解码器组成,采用ViT-MAE技术实现图像级语言模型。用户可以通过Gradio演示体验PIXEL,并查看预训练和微调指南。未来将提供渲染指南、优化模型及HuggingFace transformers的集成。
LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
CLIP-ReID - 基于CLIP的无标签图像重识别新方法
CLIP-ReIDGithub人工智能图像重识别开源项目视觉语言模型计算机视觉
CLIP-ReID提出了一种无需具体文本标签的图像重识别新方法。该方法基于CLIP视觉-语言模型,结合CNN和ViT架构,并运用SIE和OLP等技术进行优化。在MSMT17等多个基准数据集上,CLIP-ReID展现了领先的性能,为图像重识别领域开辟了新的研究方向。
GLIGEN - 开放式条件引导的文本到图像生成模型
GLIGENGithub人工智能开源项目文本到图像生成深度学习计算机视觉
GLIGEN是一个创新的开放式条件引导文本到图像生成模型。它扩展了冻结文本到图像模型的功能,支持框、关键点和图像等多种引导条件。在COCO和LVIS数据集的零样本测试中,GLIGEN大幅超越了现有的有监督布局到图像生成基线。这项技术在开放世界场景下的应用前景广阔,同时也需关注其局限性和伦理影响。
LLaMA-VID - 支持长视频处理的多模态大语言模型
GithubLLaMA-VID多模态大语言模型开源项目视觉语言模型视频理解
LLaMA-VID是一个新型多模态大语言模型,可处理长达数小时的视频。它通过增加上下文令牌扩展了现有框架的能力,采用编码器-解码器结构和定制令牌生成策略,实现对图像和视频的高效理解。该项目开源了完整的模型、数据集和代码,为视觉语言模型研究提供了有力工具。
MetaCLIP - CLIP模型数据处理优化工具
CLIPGithubMetaCLIP图像文本对开源项目数据清洗预训练模型
MetaCLIP是一个改进CLIP模型数据处理的开源项目。它提出了一种新的数据筛选算法,无需依赖现有模型即可从头整理数据。该项目强调数据质量,提供了可扩展到CommonCrawl全数据集的方法。MetaCLIP公开训练数据分布,提高了透明度,并为CLIP模型提供标准化的实验设置,便于控制实验和公平比较。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号