Project Icon

siglip-base-patch16-256

改进CLIP的多模态预训练模型SigLIP

SigLIP是一个基于CLIP改进的多模态预训练模型。它使用Sigmoid损失函数,在WebLI数据集上以256x256分辨率训练。相比CLIP,SigLIP在小批量和大规模批处理中都表现更好,适用于零样本图像分类和图像-文本检索任务。模型在多个基准测试中超越了CLIP,为图像-文本预训练领域带来了新进展。

CLIP-ViT-B-32-256x256-DataComp-s34B-b86K - 基于DataComp训练的CLIP多模态视觉语言模型
CLIPDataComp-1BGithubHuggingfaceViT-B-32图像分类开源项目机器学习模型
CLIP ViT-B/32是一个在DataComp-1B数据集上训练的视觉语言模型,通过OpenCLIP框架实现。模型在ImageNet-1k分类任务中实现72.7%零样本准确率,支持图像分类、跨模态检索等研究任务。该开源项目为计算机视觉研究提供了重要的实验基础
ViT-L-14-CLIPA-datacomp1B - CLIPA-v2模型实现低成本高性能零样本图像分类
CLIPAGithubHuggingfaceOpenCLIP对比学习开源项目模型视觉语言模型零样本图像分类
ViT-L-14-CLIPA-datacomp1B是一个基于CLIPA-v2架构的视觉-语言模型,在datacomp1B数据集上训练。该模型采用对比学习方法,能够进行零样本图像分类,在ImageNet上实现81.1%的准确率。通过OpenCLIP库,用户可以方便地进行图像和文本的特征编码。这个模型不仅性能优异,还具有训练成本低的特点,为计算机视觉研究提供了新的发展方向。
CLIP-convnext_base_w-laion_aesthetic-s13B-b82K - LAION-5B训练的ConvNeXt-Base CLIP模型
CLIPConvNextGithubHuggingface图像分类开源项目数据集机器学习模型
ConvNeXt-Base架构的CLIP模型在LAION-5B子集上完成训练,支持256x256和320x320两种图像分辨率。在ImageNet零样本分类评测中取得70.8%-71.7%的top-1准确率,样本效率超过同规模ViT-B/16模型。该模型主要用于研究领域,可执行零样本图像分类和图文检索等任务。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg - 基于LAION-2B数据集的卷积神经网络达到79%零样本分类准确率
CLIPConvNextGithubHuggingface图像分类开源项目机器学习模型神经网络
CLIP ConvNeXt-XXLarge是一个在LAION-2B数据集上训练的大规模视觉语言模型,总参数量12亿,图像分辨率256x256。模型采用ConvNeXt-XXLarge图像结构和ViT-H-14规模的文本编码器,在ImageNet零样本分类上达到79%准确率。主要应用于图像分类、检索等研究任务。
plip - 病理学视觉语言基础模型 革新AI分析
AIGithubPLIP开源项目病理学视觉语言模型预训练模型
PLIP是首个针对病理AI的视觉和语言基础模型,通过大规模预训练实现病理图像和文本描述的特征提取。作为CLIP模型的改进版,PLIP支持图像文本编码和相似度计算,可通过多种API方式使用。该模型为病理图像分析提供新的研究工具,助力医疗AI在病理诊断和研究中的应用。
CLIP-ViT-B-32-laion2B-s34B-b79K - 基于LAION-2B数据集训练的CLIP ViT-B/32零样本图像识别模型
CLIPGithubHuggingfaceLAION-2B图像分类多模态模型开源项目模型零样本学习
CLIP-ViT-B-32-laion2B-s34B-b79K是一个基于LAION-2B英文数据集训练的CLIP ViT-B/32模型,在ImageNet-1k上实现66.6%的零样本top-1准确率。该模型适用于零样本图像分类、图像文本检索等任务,由Stability AI提供算力支持,采用OpenCLIP框架训练。此模型为研究人员提供了探索零样本任意图像分类的有力工具。
CLIP-convnext_base_w-laion2B-s13B-b82K - ConvNeXt CLIP模型在ImageNet零样本分类中达到70.8%以上准确率
CLIPConvNeXtGithubHuggingfaceLAION-5BOpenCLIP开源项目模型零样本图像分类
这是一系列基于LAION-5B数据集训练的CLIP ConvNeXt-Base模型。经过13B样本训练后,模型在ImageNet零样本分类中实现了70.8%以上的Top-1准确率,显示出比ViT-B/16更高的样本效率。模型使用timm的ConvNeXt-Base作为图像塔,并探索了增强图像增强和正则化的效果。作为首个在CLIP ViT-B/16和RN50x4规模下训练的ConvNeXt CLIP模型,它为零样本图像分类研究提供了新的选择。
CLIP-convnext_base_w-laion2B-s13B-b82K-augreg - ConvNeXt-Base架构的CLIP模型用于高效图像分类
CLIPConvNeXtGithubHuggingfaceLAION-5B图像检索开源项目模型零样本图像分类
该项目提供了一系列基于ConvNeXt-Base架构的CLIP模型,在LAION-5B数据集子集上训练。这些模型作为ViT和ResNet的替代方案,在模型规模和图像分辨率方面展现出良好的可扩展性。经过13B样本训练,模型在ImageNet零样本分类任务中达到70.8%以上的top-1准确率,体现出较高的样本效率。这些模型可应用于零样本图像分类、图像文本检索等多种任务。
CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k - 具备零样本学习与多语言支持的图像模型
CLIP ViT-B/32GithubHuggingfaceLAION-5B图像分类多语言性能开源项目模型零样本学习
该模型基于LAION-5B数据集和OpenCLIP技术,能够进行零样本图像分类和图像-文本检索。通过结合CLIP ViT-B/32和xlm roberta,这一模型在各种图像任务中显示出较高性能。同时,其多语言能力经验证,可提升imagenet1k等多语言数据集上的表现,尤其在意大利语和日语测试中效果显著。依托于高效的OpenCLIP训练,模型在mscooco和flickr30k数据集上有较大性能提升,是图像生成与分类的可靠选择。
CLIP-ViT-B-16-laion2B-s34B-b88K - 基于LAION-2B数据集训练的CLIP零样本图像分类模型
CLIPGithubHuggingfaceLAION-2B图像分类多模态模型开源项目模型零样本学习
CLIP-ViT-B-16-laion2B-s34B-b88K是基于LAION-2B英文数据集训练的CLIP ViT-B/16模型,在ImageNet-1k上达到70.2%的零样本Top-1准确率。该模型适用于零样本图像分类、图像文本检索等任务,也可用于图像分类微调、线性探测分类和图像生成引导等下游任务。本模型主要面向研究用途,不适合直接应用于商业场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号