Project Icon

trax

代码清晰、高速执行的深度学习库

Trax是一个由Google Brain团队维护的端到端深度学习库,专注于清晰代码和高速执行。它提供预训练的Transformer模型和丰富的API文档,支持用户创建和训练自定义模型,并与TensorFlow数据集无缝集成。Trax兼容CPUs、GPUs和TPUs,用户可以通过Python脚本、notebooks和命令行界面轻松使用。

tensor2tensor - 一个旨在使深度学习更加深入的深度学习模型和数据集的库
GithubTensor2Tensor开源项目数据集模型训练深度学习翻译任务
Google Brain团队和社区合作开发的tensor2tensor库,通过提供多模态的深度学习模型和数据集,简化了机器学习的应用,尤其在文本、图像与语音处理上表现出色。项目不再开发新功能,但持续维护并推荐用户迁移到其后继库Trax,以获得更好的支持和更新。
tracr - 开源编译器实现RASP程序到Transformer权重的转换
GithubRASPTracrtransformer开源项目编译器解释性
tracr是一个开源编译工具,可将RASP程序转换为Transformer权重。它通过追踪程序、推断基向量和中间表示,最终生成Haiku模型。tracr支持类别和数值表示,使用BOS标记实现多种操作,并探索了残差流压缩嵌入。研究人员可以利用tracr编译RASP程序,查看中间激活值,深入分析模型行为,为Transformer可解释性研究提供实验平台。
transformers - 机器学习库,覆盖文本、视觉与音频处理
GithubHugging Face人工智能多模态开源项目机器学习自然语言处理
探索🤗 Transformers——一个功能全面的机器学习库,覆盖文本、视觉与音频处理。该库提供数千种可对接JAX、PyTorch或TensorFlow的预训练模型,适用于多种语言处理与多模态任务。主要功能包括: - 文本分类 - 信息提取 - 问答系统 - 摘要生成 - 翻译 - 文本生成 此外,还能处理表格问答、OCR及视觉问答等多模态任务。Transformers库易于使用,支持模型间的快速切换与无缝整合。
tr - 高效的离线OCR文本识别与文档理解SDK
CRNNGithubOCRTransformertr多模态大模型开源项目
tr是一款离线OCR文本识别SDK,核心采用C++开发并提供Python接口,支持多行文本识别和多模态大模型集成。tr结合CRNN与TransformerEncoder,提供高效且资源占用低的OCR解决方案,适用于如弯曲文本和图表等复杂场景。最新版本优化了C++接口、支持Python2、多线程功能,并去除了对opencv-python和Pillow的依赖。提供简洁的下载与安装指引,及详细的示例代码便于快速部署和测试。
traceml - 机器学习数据追踪与可视化工具,支持多种深度学习框架
GithubPolyaxonTraceML开源项目数据追踪机器学习深度学习
TraceML 是一款强大的工具,用于机器学习和数据的追踪、可视化、解释和漂移检测。它与 Keras、PyTorch、TensorFlow、Fastai、Pytorch Lightning 和 HuggingFace 等多种深度学习和机器学习框架集成,方便用户记录和跟踪实验数据。TraceML 支持离线模式、多种数据可视化接口,并能生成详细的数据框架总结。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
tract - 神经网络推理工具,支持多种格式与优化
GithubNNEFONNXTensorFlowtract开源项目神经网络推理
`tract`是一款神经网络推理工具,支持读取和优化ONNX与NNEF格式。它提供多种神经网络模型的支持,并附有详尽的技术文档和应用实例,适用于移动设备和微控制器等多种应用场景。
trankit - 轻量级的多语言自然语言处理Python工具包,支持多个语言的预训练模型
GithubNLP工具PythonTrankitTransformer多语言开源项目
Trankit是一个基于Transformer架构的轻量级Python工具包,支持多语言自然语言处理,包含针对56种语言的90个预训练流水线。它引入了自动模式,多语言输入可自动检测。Trankit在多个自然语言处理任务上表现优异,超过Stanza等主流工具包,并保持高效的内存使用和处理速度。用户无需编程经验即可通过简便的命令行界面使用,还可定制流水线。
Trace - 创新AutoDiff工具助力AI系统端到端训练
AI系统GithubPyTorchTrace优化开源项目自动微分
Trace是微软开发的创新AutoDiff工具,旨在实现AI系统的端到端训练。该工具通过捕获和传播执行轨迹,扩展了反向传播算法的应用范围。Trace作为Python库,支持直接编写代码并优化特定部分,类似于PyTorch的使用方式。它可处理多种反馈类型,如数值奖励、损失函数、自然语言文本和编译器错误。Trace为AI系统优化提供了灵活且强大的解决方案,适用于各种复杂的AI训练场景。
Transformer_Tracking - 视觉追踪中Transformer应用的全面综述和前沿动态
GithubTransformer开源项目深度学习目标检测视觉跟踪计算机视觉
本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号