Project Icon

rl-plotter

绘制强化学习训练曲线的工具

rl-plotter 是一个简单的工具,可以轻松绘制强化学习训练曲线。支持自定义记录器、多实验绘图和多种绘图样式,兼容 OpenAI-baseline 和 OpenAI-spinningup。用户可以通过命令行方式绘制结果,并对图表进行个性化设置,如平均分组和阴影标准偏差。适用于研究人员和开发者追踪和可视化强化学习训练过程,提升工作效率和结果质量。

OfflineRL-Kit - 高效易用的PyTorch离线强化学习库
GithubPyTorch实验管理开源项目模型训练离线强化学习算法库
OfflineRL-Kit是基于PyTorch的离线强化学习库,提供清晰的代码结构和最新算法实现。支持CQL、TD3+BC等多种算法,具备高扩展性和强大的日志系统。该库还支持并行调优,便于研究人员进行实验。相比其他离线强化学习库,OfflineRL-Kit在性能和易用性方面都有显著优势,是离线强化学习研究的有力工具。
LLM-RLHF-Tuning - RLHF三阶段训练支持指令微调、奖励模型和多种训练方式
DPOGithubLLaMALLaMA2PPORLHF开源项目
本项目实现了RLHF的三阶段训练,包括指令微调、奖励模型训练和PPO算法训练。支持LLaMA和LLaMA2模型,并提供多种分布式加速训练方法。项目附有详细的实现文档,并对比了其他开源框架的功能,是RLHF训练的宝贵资源。
awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
FinRL - 开源金融强化学习框架助力自动化量化交易
FinRLGithub开源框架开源项目强化学习量化交易金融科技
FinRL是一个开源金融强化学习框架,旨在促进量化金融领域的自动化交易。它采用三层架构设计,包括市场环境、智能代理和金融应用,支持多种数据源,并提供完整的训练-测试-交易流程。FinRL为研究人员和从业者提供了一个灵活高效的平台,用于开发和测试先进的交易策略,推动金融科技创新。
datamapplot - Python库实现数据地图的高质量可视化
DataMapPlotGithubPython库交互式绘图开源项目数据可视化数据地图
DataMapPlot是一个用于创建数据地图可视化的Python库。它可生成适用于演示、海报和论文的静态或简单交互式数据地图图表。用户只需标记数据点簇,库即可自动处理剩余工作。DataMapPlot提供多种自定义选项,包括暗色模式、字体和颜色映射等。其核心功能集中在create_plot和create_interactive_plot两个函数上,使用简便。该工具适合各类数据可视化需求,尤其适用于科研成果展示。
PufferLib - 复杂游戏环境强化学习的简化工具
GithubPufferLibPyTorch开源项目强化学习环境包装
PufferLib是一个包装层工具,旨在简化复杂游戏环境中的强化学习开发。它支持原生PyTorch网络和简短的环境绑定,自动处理大部分复杂操作。该工具提供优化的LSTM支持、性能指标、本地仪表板、异步环境采样和检查点等功能,为强化学习研究提供全面解决方案。
plotnine - Python 数据可视化库 实现 ggplot2 图形语法
GithubPythonggplot2plotnine开源项目数据可视化语法图形
plotnine 是一个实现 ggplot2 图形语法的 Python 数据可视化库。该库允许通过将数据框变量映射到视觉特征来组合绘图,支持逐步构建复杂图表。plotnine 提供丰富的绘图功能和可自定义的主题风格,适用于数据分析和科研可视化。它保持了简单图表的易用性,同时简化了复杂自定义图表的创建过程。
reward-bench - 用于评估使用如Starling、PairRM、OpenAssistant和DPO等算法的奖励模型的能力和安全性的基准工具
GithubRewardBenchanymodel开源项目数据集文献评价标准
RewardBench是一款基准工具,用于评估使用如Starling、PairRM、OpenAssistant和DPO等算法的奖励模型的能力和安全性。该工具提供通用的推理代码、统一的数据集格式和测试,以确保公平评估,并拥有强大的分析与可视化功能。用户可以通过pip快速安装并运行评估脚本,测试各种奖励模型的性能和偏好集。
hands-on-rl - 实践驱动的强化学习进阶教程
GithubPython开源项目强化学习机器学习深度学习课程
hands-on-rl项目提供一套系统化的强化学习实践教程。该教程涵盖从Q-learning到策略梯度等核心算法,通过递进难度的案例帮助学习者掌握RL技术。内容包括出租车驾驶和登月模拟等实例,并结合深度学习知识。教程提供Python代码实现和详细解释,适合希望深入学习强化学习的研究者和开发者。
awesome-deep-rl - 深度强化学习领域的最新研究综述与应用案例
Deep Reinforcement LearningGithubModel-basedPolicy GradientReinforcement LearningUnsupervised RL开源项目
该项目收录了深度强化学习领域的重要研究成果和应用示例,包括最新的学术论文、框架、算法和应用案例,覆盖无监督、离线、价值基础和策略梯度等多种方法。项目内容经常更新,提供最新的研究动态和工具,如2024年的HILP与2022年的EDDICT。适合从事人工智能、机器学习和强化学习的专业人员与爱好者了解该领域的最新进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号