Project Icon

h2ovl-mississippi-800m

紧凑型视觉语言模型,提供出色的文本识别功能

H2OVL-Mississippi-800M是H2O.ai推出的一款紧凑型视觉语言模型,拥有0.8亿参数,专注于OCR文本识别,表现出色。该模型在OCRBench测试中领先,超越更大规模的模型。基于H2O-Danube的架构,Mississippi-800M扩展了视觉和文本整合能力。通过1900万图文对进行训练,尤其注重OCR、文档理解以及表格和图表的解析,优化紫为OCR任务。

TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
llava-v1.6-mistral-7b-hf - 融合Mistral-7B的多模态视觉语言模型
GithubHuggingfaceLLaVA-NeXT图像理解多模态模型开源项目模型自然语言处理视觉问答
LLaVa-v1.6-mistral-7b-hf是基于Mistral-7B的多模态视觉语言模型,通过提高输入图像分辨率和优化视觉指令微调数据集,增强了推理、OCR和世界知识能力。该模型适用于图像描述、视觉问答等多模态对话任务,为开发高性能多模态聊天机器人提供了强大支持。
metaclip-b32-400m - 揭秘CLIP数据处理方法的高性能视觉语言模型
GithubHuggingfaceMetaCLIP图像文本匹配开源项目模型自然语言处理计算机视觉零样本图像分类
MetaCLIP-b32-400m是基于CommonCrawl数据集训练的视觉语言模型,旨在解析CLIP的数据准备方法。该模型构建了图像和文本的共享嵌入空间,支持零样本图像分类和基于文本的图像检索等功能。研究人员可通过此模型探究CLIP的数据处理流程,加深对视觉语言模型训练过程的理解。
h2o-danube3-4b-chat - H2O.ai推出支持离线运行的4亿参数聊天模型
GithubHuggingfaceh2o-danube3-4b-chattransformers使用注意事项参数开源项目模型语言模型
h2o-danube3-4b-chat是由H2O.ai推出的4亿参数聊天模型,采用Llama 2架构,并经过H2O LLM Studio微调。该模型支持在手机设备上离线运行,使用Mistral tokenizer,支持32,000词汇量和8,192上下文长度。其在🤗 Open LLM Leaderboard上的表现具竞争力,并支持量化和多GPU分片,便于加载与使用。
Tess-v2.5-Phi-3-medium-128k-14B - 提高大型语言模型指令处理的效率与准确性
AxolotlGithubHuggingfacemicrosoft/Phi-3-medium-128k-instruct中等模型开源开源项目模型
Tess-v2.5-Phi-3-medium-128k-14B基于微软的Phi-3模型,利用Axolotl平台提升其指令理解和生成能力。通过优化模型结构,提高用户交互的精准性,从而提升文本生成质量。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
Florence-2-large-no-flash-attn - 基于统一表示的多功能视觉人工智能模型
Florence-2GithubHuggingface图像处理多任务学习开源项目模型自然语言处理视觉基础模型
Florence-2-large-no-flash-attn是一款由微软开发的视觉基础模型。它采用提示式方法处理多种视觉和视觉语言任务,包括图像描述、目标检测和分割。该模型利用54亿个注释的大规模数据集进行多任务学习,在零样本和微调场景下均表现出色。Florence-2的序列到序列架构使其在各类下游任务中展现优异性能,为统一视觉表示提供了新的可能性。
glm-4v-9b - 开源多模态AI模型GLM-4V-9B展现卓越性能
GLM-4V-9BGithubHuggingface图像描述多模态模型开源项目模型自然语言处理视觉理解
GLM-4V-9B是一款由智谱AI开发的开源多模态人工智能模型,支持1120x1120高分辨率下的中英双语多轮对话。该模型在综合能力、感知推理、文字识别和图表理解等多个领域表现优异,与GPT-4-turbo、Gemini 1.0 Pro等主流模型相比具有竞争力。GLM-4V-9B支持8K上下文长度,为研究者和开发者提供了强大的视觉理解和语言处理能力。
license_plate_recognizer - 精准识别车牌文字的OCR模型,适合自动化监控应用
GithubHuggingfaceLicense Plate RecognitionOCRTransformer模型字符错误率开源项目模型自动监控
此模型基于微软的trocr-base-handwritten,专门开发用于从车牌图像中提取文本,特别适用于OCR车牌识别任务,字符错误率为0.0036,适合各类车辆自动化监控系统。利用TrOCR模型并在PawanKrGunjan/license_plates数据集上微调,能高效将图像转换为文本。在低光或者低分辨率下,性能可能下降,且可能会受到不同地区车牌设计差异的影响。
layoutlmv3-large - 统一文本和图像掩码的文档AI预训练模型
GithubHuggingfaceLayoutLMv3Transformer多模态模型开源项目文档AI模型预训练
LayoutLMv3是一种用于文档AI的多模态Transformer模型,由Microsoft Document AI项目开发。该模型采用统一的文本和图像掩码预训练方法,架构简单且通用。LayoutLMv3可应用于表单理解、收据识别、文档视觉问答等文本相关任务,以及文档图像分类和布局分析等图像相关任务。这种灵活性使其成为文档AI领域的通用预训练模型,为多种文档处理任务提供了有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号