Project Icon

ALMA-13B-R

通过对比优化提升ALMA-13B-R翻译准确性

ALMA-13B-R采用对比偏好优化技术在机器翻译方面表现优异。该模型使用三联偏好数据实现微调,能够在特定条件下达到甚至超越GPT-4和WMT冠军的水平。这一优化方法提升了翻译的准确性,适用于多种应用场景,为开发者提供了可靠的翻译支持。

Chinese-LLaMA-Alpaca-3 - 中文Llama-3大模型及其精调版本的特性
GithubLlama-3-Chinese中文大模型开源开源项目性能提升指令精调
Chinese-LLaMA-Alpaca-3项目推出了基于Meta新一代Llama-3技术的中文模型版本,涵盖原始及指令精调版本。这些模型利用海量中文数据增强了语义理解与指令执行性能,可广泛适用于多种中文文本处理任务。
suzume-llama-3-8B-multilingual - Llama 3模型的多语言微调版本 提升跨语言对话性能
GithubHuggingfaceLlama 3人工智能多语言模型开源项目机器学习模型语言训练
Suzume-llama-3-8B-multilingual是基于Llama 3的多语言微调模型,经过近9万条多语言对话训练。该模型保持了Llama 3的英语能力,同时显著提升了多语言对话表现,涵盖德语、法语、日语、俄语和中文等语言。在MT-Bench多语言评测中,其成绩与顶级7B模型相当,展现了强大的跨语言对话能力。
Llama-3.1-Storm-8B - 多任务智能的高性能开源语言模型
GithubHuggingfaceLlama-3.1-Storm-8B人工智能大语言模型开源项目机器学习模型模型微调
Llama-3.1-Storm-8B是基于Llama-3.1-8B-Instruct改进的开源语言模型。通过自主数据筛选、定向微调和模型合并,它在10个基准测试中显著超越原始模型,包括指令遵循、知识问答、推理能力、真实性和函数调用。GPQA提升7.21%,TruthfulQA提升9%,函数调用准确率提升7.92%。支持Transformers、vLLM和Ollama等多种部署方式,为AI开发者提供高性能的通用型语言模型选择。
Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
llama-7b-hf - LLaMA-7B模型在自然语言处理和AI研究中的应用
GithubHuggingfaceLLaMA开源项目模型模型评估自动回归模型自然语言处理补充授权
LLaMA-7B是Meta AI的FAIR团队开发的自回归语言模型,基于转换器架构拥有7B参数,主要用于研究大语言模型的可能性。模型改进了解决EOS标记问题,并通过多数据集如CCNet、C4和Wikipedia进行训练,展现出语言间和方言间的性能差异,适合问答和自然语言理解等应用场景。仅限获授权的非商业研究使用,更多信息请参考Meta AI的研究出版物。
LLaMA-Pro - 具有块扩展的渐进式 LLaMA
GPT模型GithubLLaMA ProMetaMath开源项目深度学习自然语言处理
LLaMA-Pro项目通过模块扩展实现渐进式改进,显著提升算法性能。开源代码和模型包括LLaMA-Pro-8B和Mistral-Pro-8B-v0.1,后者在多个基准测试中表现优异,尤其在代码与数学能力方面超越主流型号。项目还提供了本地执行方法和训练代码。在ACL 2024大会上,项目论文已被接收,展示出其学术和实用价值。同时,LLaMA-Pro项目提供评估工具和预训练样例,支持开发者高效开发。
Firefly-LLaMA2-Chinese - 低资源高效的中英文LLaMA2模型预训练与指令微调
Firefly-LLaMA2-ChineseGithubHuggingface中英双语模型低资源增量预训练大模型技术开源项目
本项目专注于低资源增量预训练与多轮指令微调,提升LLaMA2模型在中文领域的表现。支持对多种中英文预训练模型进行扩充与优化,开源了7B和13B的Base与Chat模型。在Open LLM Leaderboard和CMMLU榜单上表现出色,以4*V100完成高效训练,远低于其他模型的GPU资源需求。提供全项目信流程训练代码及数据,对LLaMA2、Baichuan2等多个模型进行详细评测,确保用户获得全面权威的模型性能数据。
mLoRA - 为大型语言模型提供高效多LoRA适配器构建
GithubLoRA适配器mLoRA大语言模型开源框架开源项目高效微调
mLoRA 是一个开源框架,旨在高效地对多个大型语言模型 (LLMs) 进行 LoRA 和其变体的微调。其主要功能包括同时微调多个 LoRA 适配器、共享基础模型、优化的流水线并行算法,并支持多种 LoRA 变体和偏好对齐算法。mLoRA 可在普通硬件上高效运行,支持多种模型和算法,有助于节省计算和内存资源。通过参考文档可了解如何快速部署和使用 mLoRA。
llama-3-8b - 优化Llama 3 效率提升 内存占用减少
AI绘图GithubHuggingfaceLlama3内存使用开源项目性能优化模型模型微调
llama-3-8b项目通过Unsloth技术在Colab平台上提供免费调优服务,支持包括Llama-3 8b和Gemma 7b在内的多种模型。项目以简单操作为特征,使模型在提升两倍以上速度和减少70%内存使用的同时,满足模型高效更新需求,适用于开发者和研究人员。所有笔记本友好初学者,并支持数据集和框架的多样性导出与上传。
NeuralLLaMa-3-8b-DT-v0.1 - 结合多模型优势的文本生成解决方案,增强任务表现
GithubHuggingfaceLazyMergekitNeuralLLaMa-3-8b-DT-v0.1准确率开源项目文本生成模型模型合并
NeuralLLaMa-3-8b-DT-v0.1 是一种通过融合ChimeraLlama-3-8B-v2、llama-3-stella-8B和llama-3-merged-linear等模型,借助LazyMergekit技术,提升了文本生成任务精确度的开源项目。适用于0-Shot和多次尝试测试,表现出出色的任务表现,严格准确率达43.71%。项目易于集成,支持多种量化配置,适合多种平台应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号