Project Icon

actionformer_release

基于Transformer的高精度动作时刻定位模型

actionformer_release是一个基于Transformer的动作定位模型,能够检测动作实例的起止点并识别动作类别。在THUMOS14数据集上,该模型取得了71.0%的mAP,超越之前的最佳模型14.1个百分点,并首次突破60%的mAP。此外,该模型在ActivityNet 1.3和EPIC-Kitchens 100数据集上也取得了优异成绩。该项目设计简洁,通过局部自注意力机制对未剪辑视频进行时间上下文建模,并可一次性精确定位动作时刻。代码和预训练模型已开源,可供下载和试用。

CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
MixFormerV2 - 高效全Transformer跟踪模型 实现CPU实时运行
GithubMixFormerV2Transformer开源项目模型蒸馏目标跟踪神经网络
MixFormerV2是一个统一的全Transformer跟踪模型,无需密集卷积操作和复杂评分预测模块。该模型提出四个关键预测token,有效捕捉目标模板与搜索区域的相关性。项目还引入新型蒸馏模型压缩方法,包括密集到稀疏和深层到浅层两个阶段。MixFormerV2在LaSOT和TNL2k等多个基准测试中表现优异,分别达到70.6%和57.4%的AUC,同时在GPU上保持165fps的推理速度。值得注意的是,MixFormerV2-S是首个在CPU上实现实时运行的基于Transformer的单流跟踪器。
timesformer-base-finetuned-k600 - 采用空间时间注意力的视频分类技术,提升视频理解能力
GithubHuggingfaceKinetics-600TimeSformer开源项目模型深度学习空间时间注意力视频分类
TimeSformer模型运用空间时间注意力机制进行视频分类,能够识别Kinetics-600中的600种标签。该工具旨在提升视频理解的准确性,提供简便的视觉分析能力。
timesformer-base-finetuned-k400 - TimeSformer视频分类模型的Kinetics-400数据集实现
GithubHuggingfaceKinetics-400TimeSformer开源项目机器学习模型视频分类视频理解
TimeSformer是一个基于空间-时间注意力机制的视频分类模型,在Kinetics-400数据集上完成微调。该模型支持400类视频标签分类,由Facebook Research开发并在Hugging Face平台开源。模型采用transformer架构处理视频序列,可通过Python接口实现快速部署和预测。
timesformer-hr-finetuned-k600 - TimeSformer:空间-时间注意力机制的视频分类模型
GithubHuggingfaceTimeSformer开源项目机器学习模型深度学习视频分类计算机视觉
TimeSformer-hr-finetuned-k600是基于Kinetics-600数据集微调的视频分类模型。该模型利用创新的空间-时间注意力机制,可对600个类别的视频进行分类。由Facebook AI Research开发,适用于多种视频理解任务。研究者和开发者可通过Transformers库轻松应用此模型,实现高效的视频内容分析。
MixFormer - 基于迭代混合注意力的端到端目标跟踪框架
GithubMixFormer开源项目注意力机制深度学习目标追踪计算机视觉
MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。
QFormer - 四边形注意力机制提升视觉Transformer性能
GithubVision Transformer图像分类开源项目注意力机制目标检测计算机视觉
QFormer是一种创新的视觉Transformer模型,采用四边形注意力机制替代传统窗口注意力。该模型通过可学习的四边形回归模块,将默认窗口转换为目标四边形进行计算,从而更好地建模不同形状和方向的目标。在图像分类、目标检测、语义分割和人体姿态估计等多项视觉任务中,QFormer在保持低计算成本的同时,性能显著优于现有的视觉Transformer模型。
Transformer_Tracking - 视觉追踪中Transformer应用的全面综述和前沿动态
GithubTransformer开源项目深度学习目标检测视觉跟踪计算机视觉
本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。
DAFormer - 提升域适应语义分割的网络架构与训练策略
DAFormerGithubTransformer域自适应语义分割开源项目网络架构语义分割
通过Transformer编码器和多级上下文感知特征融合解码器,显著提升域适应语义分割性能。DAFormer使用稀有类采样、ImageNet特征距离和学习率预热等策略,提升GTA→Cityscapes和Synthia→Cityscapes的分割效果,并扩展至域泛化领域。在多个UDA基准上,DAFormer显著超越了前沿方法,成为领域推广和不受目标图像限制的语义分割任务中新的性能标杆。
mmaction2 - 开源视频理解工具箱MMAction2基于PyTorch实现
GithubMMAction2OpenMMLab开源项目模型库行动识别视频理解
MMAction2为基于PyTorch的开源视频理解工具箱,涵盖动作识别、动作定位、时空动作检测等多种任务。项目特点包括模块化设计、丰富的模型库以及详尽文档,支持灵活的自定义配置。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号