Project Icon

hdmi

FPGA上的开源HDMI 1.4b视频音频输出方案

该项目采用SystemVerilog实现HDMI 1.4b视频音频输出,适用于FPGA开发。支持多种视频格式和音频采样率,输出完整HDMI信号。提供详细文档、多平台支持和调试指南,并讨论HDMI许可事宜。作为全面的开源方案,为FPGA开发者提供了有价值的参考资源。

hdmi

English | Français | Help translate

hdmi

SystemVerilog code for HDMI 1.4b video/audio output on an FPGA.

Why?

Most free and open source HDMI source (computer/gaming console) implementations actually output a DVI signal, which HDMI sinks (TVs/monitors) are backwards compatible with. To support audio and other HDMI-only functionality, a true HDMI signal must be sent. The code in this repository lets you do that without having to license an HDMI IP block from anyone.

Demo: VGA-compatible text mode, 720x480p on a Dell Ultrasharp 1080p Monitor

GIF showing VGA-compatible text mode on a monitor

License

This project is dual-licensed under MIT and Apache 2.0.

SPDX-License-Identifier: MIT OR Apache-2.0

Usage

  1. Take files from src/ and add them to your own project. If you use hdlmake, you can add this repository itself as a remote module.
  2. Other helpful modules for displaying text / generating sound are also available in this GitHub organization.
  3. Consult the simple usage example in top/top.sv.
  4. See hdmi-demo for code that runs the demo as seen the demo GIF.
  5. Read through the parameters in hdmi.sv and tailor any instantiations to your situation.
  6. Please create an issue if you run into a problem or have any questions. Make sure you have consulted the troubleshooting section first.

Platform Support

To-do List (upon request)

  • 24-bit color
  • Data island packets
    • Null packet
    • ECC with BCH systematic encoding GF(2^8)
    • Audio clock regeneration
    • L-PCM audio
      • 2-channel
      • 3-channel to 8-channel
    • 1-bit audio
    • Audio InfoFrame
    • Auxiliary Video Information InfoFrame
    • Source Product Descriptor InfoFrame
    • MPEG Source InfoFrame
      • NOTE—Problems with the MPEG Source Infoframe have been identified that were not able to be fixed in time for CEA-861-D. Implementation is strongly discouraged until a future revision fixes the problems
    • Gamut Metadata
  • Video formats 1, 2, 3, 4, 16, 17, 18, and 19
  • VGA-compatible text mode
    • IBM 8x16 font
    • Alternate fonts
  • Other color formats (YCbCr, deep color, etc.)
  • Support other video id codes
    • Interlaced video
    • Pixel repetition

Pixel Clock

You'll need to set up a PLL for producing the two HDMI clocks. The pixel clock for each supported format is shown below:

Video ResolutionVideo ID Code(s)Refresh RatePixel Clock FrequencyProgressive/Interlaced
640x480160Hz25.2MHzP
640x480159.94Hz25.175MHzP
720x4802, 360Hz27.027MHzP
720x4802, 359.94Hz27MHzP
720x57617, 1850Hz27MHzP
1280x720460Hz74.25MHzP
1280x720459.94Hz74.176MHzP
1280x7201950Hz74.25MHzP
1920x10801660Hz148.5MHzP
1920x10801659.94Hz148.352MHzP
1920x10803430Hz74.25MHzP
1920x10803429.97Hz74.176MHzP
3840x2160 (not ready)97, 10760Hz594MHzP
3840x216095, 10530Hz297MHzP

The second clock is a clock 5 times as fast as the pixel clock. Even if your FPGA only has a single PLL, the Altera MegaWizard (or the Xilinx equivalent) should still be able to produce both. See hdl-util/hdmi-demo for example PLLs.

L-PCM Audio Bitrate / Sampling Frequency

Both audio bitrate and frequency are specified as parameters of the HDMI module. Bitrate can be any value from 16 through 24. Below is a simple mapping of sample frequency to the appropriate parameter

WARNING: the audio can be REALLY LOUD if you use the full dynamic range with hand-generated waveforms! Using less dynamic range means you won't be deafened! (i.e. audio_sample >> 8 )

Sampling FrequencyAUDIO_RATE value
32 kHz32000
44.1 kHz44100
88.2 kHz88200
176.4 kHz176400
48 kHz48000
96 kHz96000
192 kHz192000

Source Device Information Code

This code is sent in the Source Product Description InfoFrame via SOURCE_DEVICE_INFORMATION to give HDMI sinks an idea of what capabilities an HDMI source might have. It may be used for displaying a relevant icon in an input list (i.e. DVD logo for a DVD player).

CodeSource Device Information
0x00Unknown
0x01Digital Set-top Box
0x02DVD Player
0x03Digital VHS
0x04HDD Videorecorder
0x05Digital Video Camera
0x06Digital Still Camera
0x07Video CD
0x08Game
0x09PC General
0x0aBlu-Ray Disc
0x0bSuper Audio CD
0x0cHD DVD
0x0dPortable Media Player

Things to be aware of / Troubleshooting

  • Limited resolution: some FPGAs don't support I/O at speeds high enough to achieve 720p/1080p
    • Workaround: Altera FPGA users can try to specify speed grade C6 and see if it works, though yours may be C7 or C8. Beware that this might introduce some system instability.
  • FPGA does not support TMDS: many FPGAs without a dedicated HDMI output don't support TMDS
    • You should be able to directly use LVDS (3.3v) instead, tested up to 720x480
    • This might not work if your video has a high number of transitions or you plan to use higher resolutions
    • Solution: AC-couple the 3.3v LVDS wires to by adding 100nF capacitors in series, as close to the transmitter as possible
  • Poor wiring: if you're using a breakout board or long lengths of untwisted wire, there might be a few pixels that jitter due to interference
    • Make sure you have all the necessary pins connected (GND pins, etc.)
    • Try switching your HDMI cable; some cheap cables like these I got from Amazon have poor shielding
  • Hot-Plug unaware: all modules are unaware of hotplug
    • This shouldn't affect anything in the long term; the only stateful value is hdmi.tmds_channel[2:0].acc
    • You should decide hotplug behavior (i.e. pause/resume on disconnect/connect, or ignore it)
  • EDID not implemented: it is assumed you know what format you want at synthesis time, so there is no dynamic decision on video format
    • To be implemented in a display protocol independent manner
  • SCL/SCA voltage level: though unused by this implementation...it is I2C on a 5V logic level, as confirmed in the TPD12S016 datasheet, which is unsupported by most FPGAs
    • Solution: use a bidirectional logic level shifter compatible with I2C to convert 3.3v LVTTL to 5v
    • Solution: use 3.3-V LVTTL I/O standard with 6.65k pull-up resistors to 3.3v (as done in J13 on the Arduino MKR Vivado 4000 schematic)
    • Emailed Arduino support: safe to use as long as the HDMI slave does not have pull-ups

Licensing

Dual-licensed under Apache License 2.0 and MIT License.

HDMI Adoption

I am NOT a lawyer, the below advice is given based on discussion from a Hacker News post and my research.

HDMI itself is not a royalty free technology, unfortunately. You are free to use it for testing, development, etc. but to receive the HDMI LA's (licensing administration) blessing to create and sell end-user products:

The manufacturer of the finished end-user product MUST be a licensed HDMI Adopter, and The finished end-user product MUST satisfy all requirements as defined in the Adopter Agreement including but not limited to passing compliance testing either at an HDMI ATC or through self-testing.

Becoming an adopter means you have to pay a flat annual fee (~ $1k-$2k) and a per device royalty (~ $0.05). If you are selling an end-user device and DO NOT want to become an adopter, you can turn on the DVI_OUTPUT parameter, which will disable any HDMI-only logic, like audio.

Please consult your lawyer if you have any concerns. Here are a few noteworthy cases that may help you make a decision:

  • Arduino LLC is not an adopter, yet sells the Arduino MKR Vidor 4000 FPGA
    • It has a micro-HDMI connector
    • Having an HDMI connector does not require a license
    • Official examples provided by Arduino on GitHub only perform DVI output
    • It is a user's choice to program the FPGA for HDMI output
    • Therefore: the device isn't an end-user product under the purview of HDMI LA
  • Unlicensed DisplayPort to HDMI cables (2011)
  • Terminated Adopters
    • There are currently 1,043 terminated adopters
    • Includes noteworthy companies like Xilinx, Lattice Semiconductor, Cypress Semiconductor, EVGA (!), etc.
    • No conclusion
  • Raspberry Pi Trading Ltd is licensed
    • They include the HDMI logo for products
    • Therefore: Raspberry Pi products are legal, licensed end-user products

Alternative Implementations

If you know of another good alternative, open an issue and it will be added.

Reference Documents

These documents are not hosted here! They are available on Library Genesis and at other locations.

Special Thanks

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号