Project Icon

STCN

改进内存覆盖的高效视频对象分割框架

STCN是一个创新的视频对象分割框架,通过改进内存覆盖重新构建时空网络。该方法在多个基准测试中达到了最先进水平,同时保持20+ FPS的高效运行。STCN采用简洁的网络结构,建立图像间亲和力,并使用L2相似度替代点积,显著提升内存利用率。这种方法在准确性和效率间实现了理想平衡,为视频对象分割研究带来新思路。

StableVideo - 通过文本驱动实现一致性扩散的视频编辑技术
GithubHuggingFaceStableVideodiffusion开源项目文本驱动视频编辑
StableVideo 通过采用最新的文本驱动一致性扩散算法,提供了创新的视频编辑技术。用户可以下载预训练模型和示例视频,用于视频帧的编辑和渲染。该工具支持多种配置,提供详细的安装和运行指南,便于在本地进行实验。借助 ControlNet 和 Text2LIVE 等开源资源,StableVideo 展示了其在视频处理领域的强大应用潜力。如果该项目对研究有帮助,请参考相关学术论文。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
SparseTrack - 多目标跟踪新方法:基于伪深度的场景分解技术
GithubSparseTrack伪深度场景分解多目标跟踪开源项目数据关联
SparseTrack提出了一种新的多目标跟踪方法,通过伪深度估计和深度级联匹配策略来分解密集场景。这种方法在MOT17和MOT20基准测试中表现出色,仅使用IoU匹配就达到了与复杂算法相当的性能。SparseTrack为解决拥挤场景中的多目标跟踪问题提供了新的思路,展示了简单方法在复杂任务中的潜力。
sn-gamestate - 创新足球比赛状态重建技术实现运动员追踪与识别
GithubSoccerNet开源项目游戏状态重建计算机视觉运动员识别运动员跟踪
SoccerNet Game State Reconstruction项目提出了一种新的计算机视觉任务,通过单个移动摄像头追踪和识别足球运动员,并构建小型地图。该项目引入了包含200个标注视频片段的数据集和新评估指标,提供了基于深度学习的基线系统和开源代码库。这一创新技术为体育行业提供了自动化比赛状态重建的工具,有望推动相关研究的进一步发展。
FocalNet - 突破注意力机制的新型视觉模型架构
FocalNetsGithub卷积神经网络图像分类开源项目目标检测语义分割
FocalNet是一种创新的视觉模型架构,无需使用注意力机制。其核心的焦点调制技术在多项视觉任务中超越了现有的自注意力方法。该模型在ImageNet分类和COCO检测等基准测试中表现优异,同时保持了高效简洁的实现。FocalNet具有平移不变性、强输入依赖性等特点,为计算机视觉领域提供了一种全新的建模思路。
RobustVideoMatting - 实现实时且高分辨率的视频抠图技术
GithubPyTorchRVMRobust Video Matting实时性能开源项目热门视频抠图
RobustVideoMatting(RVM)是针对视频中人物进行抠图的专利技术,采用循环神经网络结构优化视频帧的时序处理,无需额外输入即可实现实时抠图。该项目支持4K 76FPS和HD 104FPS的实时处理速度,可广泛应用于各种视频编辑和增强场景。
Video-P2P - 跨注意力控制实现高质量视频内容转换技术
CVPR 2024GithubVideo-P2P人工智能开源项目视频编辑跨注意力控制
Video-P2P是一个发表于CVPR 2024的视频编辑项目,通过跨注意力控制机制实现视频内容的高质量转换。该项目提供快速和稳定两种运行模式,支持物体替换、风格转换等多种编辑场景。项目团队公开了相关数据集和在线演示,为研究人员和开发者提供了实用资源,促进了视频编辑技术的进步。
SSD-Tensorflow - 目标检测的单一网络实现
COCOGithubPascal VOCSSDTensorFlowVGG开源项目
SSD是一种高效的目标检测框架,利用单一网络结构实现物体识别。该项目提供了TensorFlow的重实现版本,支持VGG架构并且易于扩展到其他变种,如ResNet和Inception。项目包括数据集接口、网络定义和数据预处理模块,用户可以通过提供的脚本进行模型训练和评估,支持Pascal VOC数据集。代码和示例帮助用户快速上手并应用于实际检测任务。
ncnn - 移动端神经网络推理框架
Githubncnn开源项目深度学习神经网络移动平台腾讯
ncnn 是一个专为移动端设计,无第三方依赖的开源神经网络推理框架。它支持跨平台功能,低内存占用及在手机CPU上的高速运算能力。利用 ncnn,开发者能够迅速在移动应用中部署深度学习模型,加入智能化功能。该框架已在众多应用程序中使用,如QQ和微信。同时,ncnn 支持 Vulkan API,优化了GPU加速功能,致使在移动设备上表现卓越。
UniRef - 跨空间时间的统一视觉对象分割模型
GithubUniRef++参考对象分割开源项目深度学习目标分割视频对象分割
UniRef++是一个统一的视觉模型,可同时处理指代图像分割、少样本分割、指代视频对象分割和视频对象分割四种任务。其核心UniFusion模块能高效注入多种参考信息,不仅性能优异,还可作为SAM等基础模型的插件组件使用。该模型在多个benchmark上展现出色表现,体现了其在对象分割领域的通用性和扩展性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号