Project Icon

STCN

改进内存覆盖的高效视频对象分割框架

STCN是一个创新的视频对象分割框架,通过改进内存覆盖重新构建时空网络。该方法在多个基准测试中达到了最先进水平,同时保持20+ FPS的高效运行。STCN采用简洁的网络结构,建立图像间亲和力,并使用L2相似度替代点积,显著提升内存利用率。这种方法在准确性和效率间实现了理想平衡,为视频对象分割研究带来新思路。

VEnhancer - 提升文本到视频生成质量的时空增强框架
AI视频处理GithubVEnhancer开源项目扩散模型空间时间增强视频生成
VEnhancer是一个时空增强框架,旨在提高文本到视频(T2V)生成模型的输出质量。该框架基于ControlNet结构,整合了预训练视频扩散模型的多帧编码器和中间块,构建可训练的条件网络。VEnhancer接收低分辨率关键帧和完整噪声潜在帧作为输入,通过噪声增强和下采样因子进行网络调节,从而生成更高质量、更连贯的视频内容。
segment-anything - 革命性AI模型实现高效图像分割
AI模型GithubSegment Anything图像分割开源项目深度学习计算机视觉
Segment Anything是Meta AI Research开发的图像分割模型,能通过简单输入生成高质量物体遮罩。该模型经过大规模数据训练,具备强大的零样本分割能力。它提供多种版本,支持ONNX导出,并附有示例和文档,便于集成应用。
TemporalNet - ControlNet时序一致性优化模型
AI绘图ControlNetGithubHuggingfaceStable DiffusionTemporalNet开源项目时序一致性模型
TemporalNet作为ControlNet的扩展模型,主要解决AI生成视频中的闪烁问题,通过优化时序一致性提升输出质量。该模型可与HED等其他模型配合使用,支持在Automatic1111的Web UI环境下运行。目前处于beta测试阶段,后续将开发Web UI扩展功能。
MindVideo - 大脑活动视频重建技术取得重大突破
GithubMinD-VideofMRI开源项目神经科学脑活动视频重建
MinD-Video是一种从大脑记录重建高质量视频的新型框架。该技术利用掩蔽大脑建模、多模态对比学习和增强稳定扩散模型,从fMRI数据中学习时空信息。MinD-Video可重建任意帧率的视频,在语义分类任务中准确率达85%,结构相似性指数达0.19,较先前技术提升45%。这项研究在NeurIPS 2023获得口头报告资格,为理解人类认知过程提供了新的途径。
sam2-hiera-tiny - 提供图像和视频分割功能的开放源码基础模型
GithubHuggingfaceSAM 2图像分割开源项目模型深度学习视觉分割视频分割
SAM 2模型提供图像和视频的可提示视觉分割功能,开源代码库支持图像和视频预测。通过提示实现精准的掩码生成及传播,在高效推理中表现出色。该项目适合视觉识别与处理领域的研究者和开发者进行应用。
cond-image-leakage - 改进图像到视频扩散模型中的条件图像依赖问题
DynamiCrafterGithubVideoCrafter图像到视频生成开源项目扩散模型条件图像泄漏
该研究揭示并解决了图像到视频扩散模型中的条件图像依赖问题。研究团队提出了适用于DynamiCrafter、SVD和VideoCrafter1等多种模型的即插即用推理和训练策略。这些策略减轻了模型对条件图像的过度依赖,增强了生成视频的动态效果。项目开源的代码、模型和演示为图像到视频生成研究提供了重要参考。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
CVPR2023-DMVFN - 动态多尺度体素流网络在视频预测领域的应用
CVPR2023GithubSOTA模型动态多尺度体素流网络开源项目数据集视频预测
本项目介绍了一种在视频预测领域的新模型——动态多尺度体素流网络。该模型由CVPR2023收录并成为亮点,通过对Cityscapes、KITTI及DAVIS等多个数据集的训练和测试,展示了其在视频预测中的表现。项目页面包括详细的安装、数据准备、训练和测试步骤,并提供丰富的可视化结果和资源链接,支持预训练模型的下载以便实际应用。
superpoint_transformer - 高效3D场景语义和全景分割的超点变换器
3D全景分割3D语义分割GithubICCV 2023SuperClusterSuperpoint Transformer开源项目
Superpoint Transformer 是一种超点 transformer 架构,适用于大规模 3D 场景的语义分割。通过自注意机制和层次化超点结构,它能多尺度挖掘超点间关系,性能卓越。同时,SuperCluster 将全景分割任务转化为超点图聚类任务,能在单个 GPU 上处理大规模场景。项目亮点包括显著的SOTA表现、快速训练和预处理等。点击查看更多详情及项目更新。
MogaNet - 多阶门控聚合网络在计算机视觉领域的创新应用
GithubMogaNet人体姿态估计图像分类开源项目目标检测视频预测语义分割
MogaNet是一种创新的卷积神经网络架构,采用多阶门控聚合机制实现高效的上下文信息挖掘。这一设计在保持较低计算复杂度的同时,显著提升了模型性能。MogaNet在图像分类、目标检测、语义分割等多项计算机视觉任务中展现出优异的可扩展性和效率,达到了与当前最先进模型相当的水平。该项目开源了PyTorch实现代码和预训练模型,便于研究者进行进一步探索和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号