Project Icon

snac

多尺度神经音频编解码器实现低比特率音频压缩

SNAC是一种多尺度神经音频编解码器,能将音频压缩为低比特率的离散编码。它使用分层令牌编码方法,通过降低粗糙令牌的采样频率来覆盖更长时间跨度,有效节省比特率并支持长时间音频建模。SNAC提供多个预训练模型,适用于语音和音乐等场景,采样率覆盖24kHz至44kHz。开发者可使用Python简单实现音频编码和解码。

ParallelWaveGAN - 通过Pytorch实现多种高效声码器模型
GithubHiFi-GANMelGANParallelWaveGAN多扬声器模型实时语音合成开源项目
ParallelWaveGAN项目以非官方形式用Pytorch实现了多种声码器模型,如Parallel WaveGAN、MelGAN等,支持实时语音合成并兼容ESPnet-TTS、NVIDIA's Tacotron2等系统。可帮助用户搭建适应多种语言的声音合成器。
CompressAI - 基于PyTorch的端到端压缩研究开源库
CompressAIGithubPyTorch图像压缩开源项目深度学习评估平台
CompressAI是基于PyTorch的开源库,致力于端到端压缩研究。该库提供深度学习数据压缩的自定义组件、预训练图像压缩模型,以及评估工具用于比较学习型模型与传统编解码器。支持Python 3.8+和PyTorch 1.7+,为压缩技术研究提供了实用平台。
Transformer-TTS - 神经语音合成系统
GithubPyTorchTacotronTransformer-TTS开源项目神经网络语音合成
Transformer-TTS,一个基于Pytorch的高效神经语音合成系统。它使用Transformer网络,且训练速度是传统seq2seq模型的3到4倍。不仅提供预训练模型,其合成语音质量经实验证明优异。同时,项目支持自定义学习模型及策略,包括Noam式预热衰减学习率及关键的梯度裁剪等,是语音合成研究的理想选择。
gan-compression - 条件生成对抗网络的高效压缩技术
GAN CompressionGithub图像生成开源项目性能优化条件生成对抗网络模型压缩
GAN Compression项目提出了一种通用的条件生成对抗网络压缩方法,可将pix2pix、CycleGAN等模型的计算量减少9-29倍,同时保持视觉质量。该方法适用于多种生成器架构和学习目标,支持配对和非配对数据。项目开源了预训练模型、演示和教程,便于研究和应用。
UniCATS-CTX-vec2wav - 声学上下文感知的创新声码器
CTX-vec2wavGithubUniCATS上下文感知声码器开源项目语音合成
UniCATS-CTX-vec2wav是UniCATS框架中的声学上下文感知声码器。该项目利用上下文VQ-Diffusion和声码化技术进行语音合成,提供完整的训练和推理流程。支持多GPU训练,并提供16kHz和24kHz采样率的预训练模型参数。此开源项目为研究人员和开发者提供了探索先进语音合成技术的平台。
Make-An-Audio - 将文本转换为高保真音频的开源扩散模型
GithubMake-An-Audio人工智能开源项目扩散模型文本转音频音频生成
Make-An-Audio是一个开源的文本到音频生成项目,基于条件扩散概率模型。该项目能够从文本等多种模态生成高保真音频,支持文本到音频、音频到音频等多种任务。项目提供了预训练模型和简单的命令行操作,方便用户生成自定义音频。此外,项目还包含了详细的训练和评估流程,以及与其他模型的性能比较。
SECap - 语音情感转文字描述的开源AI系统
GithubSECap大语言模型开源项目情感分析语音情感描述音频处理
SECap是一个开源的语音情感描述生成系统,结合大语言模型技术将语音情感转化为文字描述。项目包含模型代码、训练测试脚本和600个音频样本的测试集。系统能捕捉语音情感特征并生成相应描述,为语音情感分析研究提供新的工具和思路。
data2vec-audio-base-960h - 利用自监督学习提升语音识别效率的开源框架
Data2VecGithubHuggingfaceTransformer开源项目模型自动语音识别自监督学习语言模型
Data2Vec是一种开源模型,基于Librispeech数据集进行960小时的16kHz语音音频的预训练和微调,在语音识别领域表现优异。利用自监督学习与自蒸馏手段,Data2Vec准确提取上下文信息,优化了自动语音识别的表现。在LibriSpeech的测试中,取得了“clean”任务2.77和“other”任务7.08的词错误率(WER),体现了其在业内的竞争力。
dc_tts - 基于深度卷积网络的高效文本到语音转换模型
DC-TTSGithubTensorFlow开源项目文本转语音训练模型语音样本
dc_tts,一个基于TensorFlow的文本到语音转换模型,使用深度卷积网络和引导注意力机制进行设计。项目不仅还原了相关学术论文,还对不同声音数据进行了深入研究,支持多种语言和数据集,提供完善的训练及预处理教程以及预训练模型,适用于学术研究和实际应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号