Project Icon

bert-base-chinese-finetuning-financial-news-sentiment-v2

金融新闻情绪分析的BERT中文模型

此项目使用bert-base-chinese模型进行金融新闻情绪分析,通过2000条训练数据和329条验证数据的微调来实现。支持沪指、人民币汇率等金融数据的情绪分析,致力于提供客观的金融市场情绪信息,帮助进行更为理性的投资选择。

bert-fa-base-uncased-sentiment-snappfood - ParsBERT波斯语评论情感分析模型
GithubHuggingfaceParsBERTSnappFood人工智能开源项目情感分析模型自然语言处理
ParsBERT波斯语情感分析模型针对SnappFood外卖平台的用户评论进行情感分类。该模型基于ParsBERT v2.0架构,使用7万条标注数据训练,可将评论准确分类为正面或负面情绪。模型在测试中实现87.98%的F1分数,并提供Colab环境供开发者使用。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
bert-base-finnish-cased-v1 - 芬兰语BERT模型提升自然语言处理性能
FinBERTGithubHuggingface开源项目模型深度学习自然语言处理芬兰语预训练模型
bert-base-finnish-cased-v1是一个针对芬兰语优化的BERT模型。它使用超过30亿个芬兰语标记和50,000个自定义词片进行预训练,显著提高了芬兰语词汇覆盖率。在文档分类、命名实体识别和词性标注等任务中,该模型的表现超越了多语言BERT,为芬兰语自然语言处理领域带来了显著进步。
bert-base-arabic-camelbert-mix-sentiment - CAMeLBERT微调的阿拉伯语情感分析模型
CAMeLBERT Mix SAGithubHuggingface开源项目情感分析模型自然语言处理阿拉伯语预训练语言模型
这是一个基于CAMeLBERT Mix模型微调的阿拉伯语情感分析模型。该模型使用ASTD、ArSAS和SemEval数据集进行微调,可通过CAMeL Tools或Transformers pipeline使用。模型能准确分析阿拉伯语句子的情感倾向,对正面和负面情感均有良好识别效果。研究还探讨了语言变体、数据规模和微调任务类型对阿拉伯语预训练语言模型的影响,为该领域提供了有价值的见解。
sentiment-roberta-large-english - RoBERTa微调的通用英文情感分析模型
GithubHuggingfaceRoBERTaSiEBERT开源项目情感分析机器学习模型自然语言处理
sentiment-roberta-large-english是一个基于RoBERTa-large的微调模型,用于英文文本的二元情感分析。该模型在15个不同来源的数据集上进行了训练和评估,提高了对各种文本类型的泛化能力。在新数据上,其表现优于仅在单一类型文本上训练的模型,平均准确率为93.2%。模型可通过Hugging Face pipeline快速部署,也可作为进一步微调的基础。
bert-base-arabic-camelbert-da-sentiment - CAMeLBERT-DA阿拉伯语情感分析模型
CAMeLBERT-DAGithubHuggingface开源项目情感分析模型自然语言处理阿拉伯语预训练语言模型
CAMeLBERT-DA情感分析模型是基于阿拉伯方言预训练模型微调而成。该模型利用ASTD、ArSAS和SemEval数据集进行了fine-tuning,可通过CAMeL Tools或transformers pipeline轻松集成使用。模型支持对阿拉伯语文本进行积极和消极的二分类情感分析。这一成果对研究阿拉伯语言模型的变体、规模和任务类型之间的相互作用具有重要意义。
FinNews.AI - 实时金融新闻智能分析与市场趋势预测平台
AI工具AI预测FinNews.AI市场趋势金融新闻分析风险管理
FinNews.AI平台运用人工智能技术,对美国股票、加密货币、外汇和金融行业新闻进行实时分析。该平台整合新闻聚合、量化分析和预测建模功能,为投资者提供市场趋势洞察。通过自动化数据采集、风险控制和多渠道实时推送,FinNews.AI致力于为金融市场参与者提供及时、准确的决策支持。
Erlangshen-Roberta-330M-Sentiment - 基于RoBERTa的高性能中文情感分析模型
GithubHuggingfaceRoBERTa中文模型开源项目微调情感分析模型自然语言理解
Erlangshen-Roberta-330M-Sentiment是一个基于RoBERTa-wwm-ext-large的中文情感分析模型。该模型在8个中文情感分析数据集(共227347个样本)上进行微调,在ASAP-SENT、ASAP-ASPECT和ChnSentiCorp等多个任务中表现优异。这个模型为中文自然语言理解,尤其是情感分析领域提供了强大支持。研究人员和开发者可以通过简单的API调用,将其集成到各类NLP项目中,提升情感分析能力。
GovernanceBERT-governance - GovernanceBERT模型提升ESG公司治理文本分类精度
ESGGithubGovernanceBERTHuggingface公司治理开源项目文本分类模型自然语言处理
GovernanceBERT-governance是针对ESG领域公司治理文本优化的语言模型。它在GovernanceBERT-base基础上,通过2000条公司治理数据集微调,提升了治理相关文本的识别和分类能力。此模型适用于ESG分析、报告解读等任务,为ESG研究和实践提供了有力的自然语言处理工具。
distilbert-base-uncased-finetuned-sst-2-english-openvino - 基于DistilBERT的情感分析模型 OpenVINO优化版达91.3%准确率
DistilBERTGithubHuggingfaceOpenVINO开源项目情感分析文本分类模型模型微调
本项目基于DistilBERT模型,在SST-2数据集上微调后转换为OpenVINO格式,专注于文本情感分类。模型在开发集上的准确率达91.3%,并支持通过Transformers pipeline快速部署。OpenVINO优化提升了推理效率,使其更适合生产环境中的情感分析应用。项目提供了简单的使用示例,方便开发者快速集成和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号