Project Icon

colpali

基于视觉语言模型的高效文档检索系统

ColPali是一个基于视觉语言模型的文档检索系统。该项目整合了ColBERT检索器模型、大型语言模型和图像语言模型,实现高效的文档搜索功能。ColPali支持自定义训练,安装和使用简便,适用于多种文档检索场景。系统能同时处理文本和图像信息,提供准确全面的检索结果。

ColPali:使用视觉语言模型的高效文档检索

[博客] [论文] [ColPali 模型卡片] [ViDoRe 基准测试] [HuggingFace 演示]

相关论文

ColPali:使用视觉语言模型的高效文档检索 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, Pierre Colombo

本仓库包含用于训练自定义 Colbert 检索模型的代码。 值得注意的是,我们使用 LLM(解码器)以及图像语言模型来训练 colbert!

安装

通过 git

pip install git+https://github.com/illuin-tech/colpali

从源代码

git clone https://github.com/illuin-tech/colpali
cd colpali
pip install -r requirements.txt

使用方法

模型使用示例位于 scripts 目录中。

# 可修改的示例脚本
python scripts/infer/run_inference_with_python.py
import torch
import typer
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoProcessor
from PIL import Image

from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
from colpali_engine.utils.image_from_page_utils import load_from_dataset


def main() -> None:
    """使用 ColPali 运行推理的示例脚本"""
    # 加载模型
    model_name = "vidore/colpali"
    model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval()
    model.load_adapter(model_name)
    processor = AutoProcessor.from_pretrained(model_name)

    # 选择图像 -> load_from_pdf(<pdf_path>),  load_from_image_urls(["<url_1>"]), load_from_dataset(<path>)
    images = load_from_dataset("vidore/docvqa_test_subsampled")
    queries = ["James V. Fiorca 来自哪所大学?", "日本首相是谁?"]

    # 运行推理 - 文档
    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: process_images(processor, x),
    )
    ds = []
    for batch_doc in tqdm(dataloader):
        with torch.no_grad():
            batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))

    # 运行推理 - 查询
    dataloader = DataLoader(
        queries,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: process_queries(processor, x, Image.new("RGB", (448, 448), (255, 255, 255))),
    )

    qs = []
    for batch_query in dataloader:
        with torch.no_grad():
            batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
            embeddings_query = model(**batch_query)
        qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    # 运行评估
    retriever_evaluator = CustomEvaluator(is_multi_vector=True)
    scores = retriever_evaluator.evaluate(qs, ds)
    print(scores.argmax(axis=1))


if __name__ == "__main__":
    typer.run(main)

HuggingFace 上的基础 Colpali 模型卡片中也提供了详细信息:ColPali 模型卡片

训练

USE_LOCAL_DATASET=0 python scripts/train/train_colbert.py scripts/configs/siglip/train_siglip_model_debug.yaml

accelerate launch scripts/train/train_colbert.py scripts/configs/train_colidefics_model.yaml

配置

所有训练参数都可以通过配置文件设置。 配置文件是一个包含所有训练参数的 yaml 文件。

结构如下:

@dataclass
class ColModelTrainingConfig:
    model: PreTrainedModel
    tr_args: TrainingArguments = None
    output_dir: str = None
    max_length: int = 256
    run_eval: bool = True
    run_train: bool = True
    peft_config: Optional[LoraConfig] = None
    add_suffix: bool = False
    processor: Idefics2Processor = None
    tokenizer: PreTrainedTokenizer = None
    loss_func: Optional[Callable] = ColbertLoss()
    dataset_loading_func: Optional[Callable] = None
    eval_dataset_loader: Optional[Dict[str, Callable]] = None
    pretrained_peft_model_name_or_path: Optional[str] = None

示例

配置文件示例:

config:
  (): colpali_engine.utils.train_colpali_engine_models.ColModelTrainingConfig
  output_dir: !path ../../../models/without_tabfquad/train_colpali-3b-mix-448
  processor:
    () : colpali_engine.utils.wrapper.AutoProcessorWrapper
    pretrained_model_name_or_path: "./models/paligemma-3b-mix-448"
    max_length: 50
  model:
    (): colpali_engine.utils.wrapper.AutoColModelWrapper
    pretrained_model_name_or_path: "./models/paligemma-3b-mix-448"
    training_objective: "colbertv1"
    torch_dtype:  !ext torch.bfloat16

  dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set
  eval_dataset_loader: !import ../data/test_data.yaml

  max_length: 50
  run_eval: true
  add_suffix: true
  loss_func:
    (): colpali_engine.loss.colbert_loss.ColbertPairwiseCELoss
  tr_args: !import ../tr_args/default_tr_args.yaml
  peft_config:
    (): peft.LoraConfig
    r: 32
    lora_alpha: 32
    lora_dropout: 0.1
    init_lora_weights: "gaussian"
    bias: "none"
    task_type: "FEATURE_EXTRACTION"
    target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'

本地训练

USE_LOCAL_DATASET=0 python scripts/train/train_colbert.py scripts/configs/siglip/train_siglip_model_debug.yaml

SLURM

sbatch --nodes=1 --cpus-per-task=16 --mem-per-cpu=32GB --time=20:00:00 --gres=gpu:1  -p gpua100 --job-name=colidefics --output=colidefics.out --error=colidefics.err --wrap="accelerate launch scripts/train/train_colbert.py  scripts/configs/train_colidefics_model.yaml"

sbatch --nodes=1  --time=5:00:00 -A cad15443 --gres=gpu:8  --constraint=MI250 --job-name=colpali --wrap="python scripts/train/train_colbert.py scripts/configs/train_colpali_model.yaml"

引用

@misc{faysse2024colpaliefficientdocumentretrieval,
      title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
      author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
      year={2024},
      eprint={2407.01449},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2407.01449}, 
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号