Project Icon

brocolli

基于Torch FX的PyTorch模型转换和量化工具,支持转换为Caffe和ONNX格式

此开源项目提供了基于Torch FX的PyTorch模型转换和量化功能,支持转换为Caffe和ONNX格式。用户可以通过简单的安装和使用步骤实现模型的转换与保存。尽管该项目已停止维护,它仍然提供了详细的使用示例和说明,适合需要进行PyTorch模型转换的用户。

onnxruntime - 跨平台的机器学习模型推理与训练加速工具
GithubONNX Runtime开源项目机器学习模型训练深度学习硬件加速
ONNX Runtime是一款跨平台的机器学习推理和训练加速工具,兼容PyTorch、TensorFlow/Keras、scikit-learn等深度学习框架及传统机器学习库。它支持多种硬件和操作系统,通过硬件加速和图优化实现最佳性能,显著提升模型推理和训练速度,尤其在多节点NVIDIA GPU上的Transformer模型训练中表现出色。
PaddleOCR2Pytorch - 开源工具实现PaddleOCR模型向PyTorch框架的转换
GithubOCR系统PaddleOCR多语言识别开源项目文本检测文本识别
PaddleOCR2Pytorch是一个开源项目,致力于将PaddleOCR模型转换为PyTorch框架可用的版本。项目支持多种OCR算法,涵盖文本检测、方向分类和文本识别,同时提供丰富的预训练模型。它不仅使PyTorch用户能够便捷使用PaddleOCR的优质模型,还为跨深度学习框架的模型转换提供了实用参考。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
former - 使用PyTorch实现简单Transformer模型的指南
GithubIMDb数据集PyTorchtransformer分类实验开源项目自注意力机制
详细介绍了如何使用PyTorch从零开始实现简单的Transformer模型,包含安装和使用指南,以及通过命令行控制超参数和数据自动下载的说明。
TensorRT - 提升PyTorch推理效率的工具
CUDAGithubPyTorchTensorRTTorch-TensorRT安装开源项目
Torch-TensorRT将TensorRT的强大功能引入PyTorch,用户仅需一行代码即可显著提升推理性能。该工具支持在多个平台上安装,包括PyPI和NVIDIA NGC PyTorch容器。通过torch.compile或导出式工作流,用户可以高效优化和部署模型。Torch-TensorRT依赖CUDA和TensorRT,与Linux和Windows等多种平台兼容。提供丰富资源,包括教程、工具和技术讲座,供用户学习使用。
xformers - Transformer 研究加速工具
GithubPyTorchTransformerxFormers开源项目注意力机制深度学习
xFormers 是一个加速 Transformer 研究的开源工具库。它提供可自定义的独立模块,无需样板代码即可使用。该项目包含前沿组件,专注于研究需求,同时注重效率。xFormers 的组件运行快速且内存利用率高,集成了自定义 CUDA 内核和其他相关库。它支持多种注意力机制、前馈网络和位置编码,适用于计算机视觉、自然语言处理等多个领域的研究工作。
Replete-LLM-V2.5-Qwen-32b-GGUF - 量化模型文件下载指南,通过选择适合的文件优化性能
GithubHuggingfaceReplete-LLM-V2.5-Qwen-32b嵌入输出权重开源项目文本生成模型视觉处理量化
该项目使用llama.cpp工具进行模型量化,提供多种Replete-LLM-V2.5-Qwen-32b模型文件下载选项。每种文件类型均说明其特性,如高质量和性能等,并适应不同硬件环境,以帮助用户根据需求优化模型质量或速度。文件适用于多种RAM和VRAM配置,便于在不同系统中实现优异性能。
awesome-model-quantization - 全面的模型量化研究资源
Awesome Model QuantizationBiBenchEfficient_AIGC_RepoGithubMQBenchSurvey of Quantization开源项目
此项目汇集了关于模型量化的各类论文、文档和代码,为研究者提供丰富的参考资源。内容包括二值化和量化方法的调研、基准测试,以及生成模型的压缩和加速技术。项目持续更新,并欢迎对未收录研究成果的贡献。感谢所有已作出贡献的研究者。
CoCa-pytorch - CoCa模型的PyTorch开源实现
CoCaGithubPytorch实现transformer架构图像文本模型对比学习开源项目
CoCa-pytorch项目提供了CoCa(Contrastive Captioners)模型的PyTorch实现。该项目将对比学习融入传统的编码器/解码器transformer,优化了图像到文本的转换。项目采用PaLM的transformer架构,包含单模态、多模态transformers和交叉注意力模块。这一实现为研究和开发图像-文本基础模型提供了有力工具。
d2l-pytorch - MXNet代码转换为PyTorch实现的指南
Dive Into Deep LearningGithubPyTorch卷积神经网络开源项目深度学习线性神经网络
本项目基于《Dive Into Deep Learning》书籍,将MXNet代码转换为PyTorch实现。内容包括安装指南、线性神经网络、多层感知器、卷积神经网络、现代卷积网络、循环神经网络和注意力机制等章节。提供详细教程和示例代码,适合使用PyTorch进行深度学习的开发者。建议克隆仓库或使用nbviewer查看notebook文件。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号