Project Icon

internlm-xcomposer2d5-7b-4bit

简化大型语言模型的文本与图像处理新纪元

InternLM-XComposer2.5在文本与图像理解领域展现非凡性能,其应用灵活性媲美GPT-4V,仅靠7B参数即可完成复杂任务。模型通过24K图文上下文训练与96K扩展能力,适用于大量输入输出任务。此外,项目提供了4-bit量化模型来有效降低内存消耗,并支持使用Transformers快速集成,涵盖从视频理解到多图对话的多种应用场景。

Qwen2-1.5B-Instruct-IMat-GGUF - 运用量化技术优化Qwen2-1.5B-Instruct模型的文本生成能力
GithubHuggingfaceIMatrixQwen2-1.5B-Instruct开源项目文本生成模型量化
项目利用llama.cpp对Qwen2-1.5B-Instruct模型进行量化,支持从8bit到1bit的多种位数及IMatrix数据集。这种方法能减少模型体积且保持性能多样,适用于不同文本生成任务。用户可使用huggingface-cli简便下载及合并文件,以满足不同应用需求。项目因其灵活性及高效性,适宜不同计算资源的使用者,为其提供多样选择。
InternVL2-4B - 先进多模态大语言模型探索视觉语言理解新高度
GithubHuggingfaceInternVL2图像理解多模态大语言模型开源项目指令微调模型
InternVL2-4B是一个多模态语言模型,集成InternViT-300M-448px视觉编码器和Phi-3-mini-128k-instruct语言模型。该模型在文档理解、图表问答和场景文字识别等任务中表现优异,超越多数开源方案。支持8K上下文窗口,可处理长文本、多图像和视频输入,在多模态能力评测中展现与商业模型相当的性能。
llava-interleave-qwen-0.5b-hf - 多模态模型中的图像到文本生成的应用与研究
GithubHuggingfaceLLaVA Interleave图像文本转换多模态模型开源项目机器学习模型自然语言处理
LLaVA Interleave是基于变换器架构进行优化的开源自回归语言模型,专注于多模态大模型和聊天机器人的研究,支持多图像和多提示生成,适用于计算机视觉和自然语言处理领域的研究人员和爱好者。在遵循开放许可证要求的前提下,模型提升了图像到文本的生成能力。通过4比特量化和Flash Attention 2优化策略,显著提高了生成效率。
internlm2-chat-20b - 高效支持长文本的20B参数对话模型,具备卓越推理和数据分析能力
GithubHuggingfaceInternLM2-Chat-20B人工智能助手工具调用开源模型开源项目模型长上下文推理
InternLM2-Chat-20B是具备20B参数的先进对话模型,支持长达20万字长上下文,表现出优秀的推理与数据分析能力。模型在多个领域,如数学、代码、创作上显示出色,部分指标超越GPT-3.5,并在GSM8K和MATH测试中接近GPT-4的表现。它的工具调用能力增强,适应复杂任务,同时强调生成符合伦理的文本。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
NVLM-D-72B-nf4 - 多模态模型NF4量化与性能优化研究
GPU内存GithubHuggingfaceNVLM-D-72B图像文本生成开源项目模型模型转换量化
NVLM-D-72B模型NF4量化转换项目利用BitsAndBytes技术实现双重量化,旨在优化性能。目前纯文本处理表现出色,但图像处理功能仍需完善。项目优化了modeling_intern_vit.py文件,提高了量化模块兼容性。模型运行需48GB以上显存,遵循CC BY-NC 4.0许可。该项目为探索大型多模态模型量化提供了宝贵经验。
cogvlm2-llama3-chat-19B-int4 - 不同场景应用的高性能多语言文本生成模型
CogVLM2GPU内存需求GithubHuggingface中英文支持图像分辨率基准测试开源项目模型
CogVLM2是一种先进的多语言文本生成模型,在多项基准测试中表现优异,如TextVQA和DocVQA。支持高达8K的文本长度和1344x1344的图像分辨率,并能在ZhipuAI开放平台上进行体验。该模型拥有高效的设计,占用较低的GPU内存,需在Linux系统下的Nvidia显卡上运行,适用于多语言环境中的各种场景。
BitNet-Transformers - 缩放1-bit大语言模型,提高GPU内存利用率
BitNet-TransformersGithubHuggingfaceLLama(2)Wikitext-103pytorch开源项目
BitNet-Transformers项目使用Llama (2)架构,并通过1-bit权重缩放技术,实现对大型语言模型的高效训练和推理。该项目基于Huggingface Transformers,显著降低了GPU内存占用,从原始LLAMA的250MB减少到BitNet模型的最低要求。用户可通过wandb实时追踪训练进度,并在Wikitext-103上进行训练。项目提供了详细的开发环境配置和训练步骤指南,为研究者和开发者提供有力支持。
PixArt-XL-2-512x512 - 快速生成高分辨率图像的高效能模型
GithubHuggingfacePixart-α开源项目扩散模型文本到图像模型深度学习生成模型
PixArt-α是一个基于Transformer架构的文本到图像生成框架,能够从文本提示生成高分辨率图像,最高可达1024像素。相比于Stable Diffusion v1.5,其训练时间仅为10.8%,大幅降低成本与碳排放。用户偏好评估显示,PixArt-α在实现效率与图像质量方面表现卓越,适用于艺术创作、教育用途及生成模型研究。但需要注意的是,其在图像还原现实性和复杂任务的执行上尚有局限。查看其GitHub或arXiv以了解更多细节。
CogVLM2 - 基于Llama3-8B的GPT4V级开源多模态模型
CogVLM2CogVLM2-VideoGithubMeta-Llama-3-8B-Instruct图像理解开源项目视频理解
CogVLM2是基于Meta-Llama-3-8B-Instruct的下一代模型系列,在多项基准测试中表现优异,支持中英文内容和高分辨率图像处理。该系列模型适用于图像理解、多轮对话和视频理解,特别适合需要处理长文本和高分辨率图像的场景。CogVLM2系列还支持8K内容长度,并在TextVQA和DocVQA等任务中显著提升表现。体验更先进的CogVLM2和CogVLM2-Video模型,迎接未来视觉智能挑战。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号