Project Icon

yoloair

YOLOAir2024版:综合模型改进教程与源码库

YOLOAir2024版发布,提供多模型支持及改进教程,包括YOLOv5、YOLOv7、YOLOv8等。通过统一框架和模块化实现模型多样化应用,如目标检测、实例分割、图像分类等,适用于科研与实际应用。免费提供源代码。

yolov10m - 高效的实时目标检测系统
COCO数据集GithubHuggingfacePyTorchYOLOv10开源项目模型目标检测计算机视觉
YOLOv10m是一个开源的目标检测项目,利用PyTorch模型和COCO数据集实现高效的计算机视觉解决方案。用户可以方便地进行训练、验证,并将模型上传至库,非常适合多种技术水平的使用者进行实时目标检测应用。
mmyolo - YOLO算法与实时对象识别工具包
GithubMMYOLOOpenMMLabYOLO系列算法实例分割开源项目目标检测
MMYOLO是一个基于PyTorch和MMDetection的开源工具包,专注于YOLO系列算法,适用于对象检测和旋转对象检测任务。该项目提供统一的基准测试、详细文档和模块化设计,便于用户构建和扩展模型。支持YOLOv5实例分割和YOLOX-Pose等功能,显著提升训练速度,并在RTMDet模型上实现了先进的性能。
assets - 视觉资产和AI模型资源库
GithubUltralyticsYOLO开源项目数据集计算机视觉预训练模型
Ultralytics Assets 仓库集成了视觉资产、预训练模型和数据集,为 Ultralytics YOLO 生态系统提供支持。该仓库涵盖对象检测、实例分割、图像分类等计算机视觉任务,为研究人员和开发者提供便捷的资源访问,加速机器学习项目的开发和优化。此仓库提供了完整的资源套件,包括视觉素材、预训练模型和注释数据集,适用于多种计算机视觉任务。它简化了资源获取过程,使开发者能够专注于项目开发而非资源收集,从而提高工作效率。
YOLOv8-TensorRT - 通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和推理解决方案
CUDAGithubONNXPyTorchTensorRTYOLOv8开源项目
本项目通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和高效推理解决方案。包括环境准备、模型导出、引擎构建和多种推理方法,支持Python和C++语言。特性涵盖ONNX模型导出、端到端引擎构建和模型推理,适用于图像和视频的不同输入源。支持Jetson设备,并附有详细的文档和脚本,便于操作,提升深度学习应用性能。
yolov3-tf2 - YOLOv3的TensorFlow实现,目标检测解决方案
GithubTensorFlow 2.0YoloV3开源项目检测训练预训练权重
该项目采用TensorFlow 2.0实现YOLOv3,提供预训练权重、推理示例和迁移学习功能,支持GPU加速、eager模式和图模式训练,并集成absl-py。用户可以方便地安装、训练和进行实时视频检测,同时支持TF模型导出和Serving。
yolov8-streamlit-detection-tracking - YOLOv8和Streamlit打造的实时目标检测追踪应用
GithubStreamlitYOLOv8实时目标检测对象追踪开源项目计算机视觉
该项目基于YOLOv8和Streamlit开发,提供实时目标检测和追踪功能的Web应用。支持RTSP、UDP、YouTube等多种视频源,以及静态视频和图像处理。用户可通过直观界面调整模型参数,查看可视化结果并下载。项目展示了计算机视觉与Web应用的集成,适合学习和演示目的。
YOLO-World - 下一代实时开放词汇目标检测模型
GithubYOLO-World开放词汇开源项目目标检测零样本学习预训练模型
YOLO-World是一款创新的实时开放词汇目标检测模型。经过大规模数据集预训练,它展现出卓越的开放词汇检测和定位能力。采用'先提示后检测'范式,YOLO-World通过重参数化技术实现高效的自定义词汇推理。该模型支持零样本目标检测、分割等多种任务,并开源了在线演示、预训练权重和微调代码,为计算机视觉领域提供了实用的研究与应用工具。
yolov10n - YOLOv10n:实时对象检测的创新技术
COCO数据集GithubHuggingfacePyTorch模型YOLOv10实时物体检测开源项目模型计算机视觉
YOLOv10n项目展示了对象检测的实时进展,结合计算机视觉与对象识别算法。其基于PyTorch的实现并支持COCO数据集用于训练与推理,保证了性能和应用的广泛性。简单的安装和模块调用,提供了快速的目标物体检测及识别功能,支持优化模型上传至相关平台,提升模型精度与效率。
darknet - 开源实时目标检测框架及YOLO算法
DarknetGithubYOLO开源项目目标检测神经网络计算机视觉
Darknet是一个开源神经网络框架,为YOLO实时目标检测系统提供基础。最新的YOLOv7算法在5-160 FPS范围内性能优异,超越了同类检测器。项目支持Linux和Windows平台,提供预训练模型、详细构建指南和命令行操作接口,方便用户进行目标检测、模型训练等任务。
ONNX-YOLOv8-Object-Detection - 将YOLOv8模型转换为ONNX格式的方法
GPUGithubONNXYOLOv8开源项目模型转换目标检测
本项目提供了一种将YOLOv8模型转换为ONNX格式的高效方法,支持在NVIDIA GPU或CPU上进行对象检测。确保输入图片尺寸与模型要求一致,以获得最佳检测精度。项目配有详细的安装指南和推理示例,包括图片、摄像头和视频推理,方便开发者快速上手并应用于实际场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号