Project Icon

lang-seg

语言驱动的零样本语义图像分割模型

LSeg是一种语言驱动的语义图像分割模型,结合文本编码器和Transformer图像编码器。它能将描述性标签与图像像素对齐,实现高效零样本分割。LSeg在多个数据集上表现出色,无需额外训练即可泛化到新类别。该模型在固定标签集上可与传统算法媲美,为语义分割任务提供了灵活有力的解决方案。

语言驱动的语义分割(LSeg)

这个仓库包含论文《语言驱动的语义分割》的官方 PyTorch 实现。

ICLR 2022

作者:

  • Boyi Li
  • Kilian Q. Weinberger
  • Serge Belongie
  • Vladlen Koltun
  • Rene Ranftl

概述

我们提出了 LSeg,一种新颖的语言驱动语义图像分割模型。LSeg 使用文本编码器计算描述性输入标签(如"草"或"建筑")的嵌入,同时使用基于 transformer 的图像编码器计算输入图像的每像素密集嵌入。图像编码器通过对比目标进行训练,以将像素嵌入与相应语义类别的文本嵌入对齐。文本嵌入提供了一种灵活的标签表示,其中语义相似的标签映射到嵌入空间中的相似区域(例如,"猫"和"毛茸茸的")。这使得 LSeg 能够在测试时泛化到以前未见过的类别,而无需重新训练甚至不需要一个额外的训练样本。我们证明,与现有的零样本和少样本语义分割方法相比,我们的方法实现了极具竞争力的零样本性能,甚至在提供固定标签集时与传统分割算法的准确度相匹配。

请查看我们的视频演示(4k)以进一步展示 LSeg 的功能。

使用方法

安装

选项 1:

pip install -r requirements.txt

选项 2:

conda install ipython
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2
pip install git+https://github.com/zhanghang1989/PyTorch-Encoding/
pip install pytorch-lightning==1.3.5
pip install opencv-python
pip install imageio
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
pip install altair
pip install streamlit
pip install --upgrade protobuf
pip install timm
pip install tensorboardX
pip install matplotlib
pip install test-tube
pip install wandb

数据准备

默认情况下,对于训练、测试和演示,我们使用 ADE20k

python prepare_ade20k.py
unzip ../datasets/ADEChallengeData2016.zip

注意:对于演示,如果您想使用随机输入,可以忽略数据加载并注释此链接处的代码。

🌻 立即尝试演示

下载演示模型

名称骨干网络文本编码器链接
演示模型ViT-L/16CLIP ViT-B/32下载

👉 选项 1: 运行交互式应用

下载演示模型并将其放在 checkpoints 文件夹下,命名为 checkpoints/demo_e200.ckpt

然后运行 streamlit run lseg_app.py

👉 选项 2: Jupyter Notebook

下载演示模型并将其放在 checkpoints 文件夹下,命名为 checkpoints/demo_e200.ckpt

然后按照 lseg_demo.ipynb 来体验 LSeg。祝您使用愉快!

训练和测试示例

训练: 骨干网络 = ViT-L/16, 文本编码器来自 CLIP ViT-B/32

bash train.sh

测试: 骨干网络 = ViT-L/16, 文本编码器来自 CLIP ViT-B/32

bash test.sh

零样本实验

数据准备

请按照 HSNet 的说明,将所有数据集放在 data/Dataset_HSN

Pascal-5i

for fold in 0 1 2 3; do
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset pascal \
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold ${fold} --nshot 0 \
--weights checkpoints/pascal_fold${fold}.ckpt 
done

COCO-20i

for fold in 0 1 2 3; do
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset coco \
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold ${fold} --nshot 0 \
--weights checkpoints/pascal_fold${fold}.ckpt 
done

FSS

python -u test_lseg_zs.py --backbone clip_vitl16_384 --module clipseg_DPT_test_v2 --dataset fss \
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold 0 --nshot 0 \
--weights checkpoints/fss_l16.ckpt 
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset fss \
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold 0 --nshot 0 \
--weights checkpoints/fss_rn101.ckpt 

模型库

数据集折叠骨干网络文本编码器性能链接
pascal0ResNet101CLIP ViT-B/3252.8下载
pascal1ResNet101CLIP ViT-B/3253.8下载
pascal2ResNet101CLIP ViT-B/3244.4下载
pascal3ResNet101CLIP ViT-B/3238.5下载
coco0ResNet101CLIP ViT-B/3222.1下载
coco1ResNet101CLIP ViT-B/3225.1下载
coco2ResNet101CLIP ViT-B/3224.9下载
coco3ResNet101CLIP ViT-B/3221.5下载
fss-ResNet101CLIP ViT-B/3284.7下载
fss-ViT-L/16CLIP ViT-B/3287.8下载

如果您觉得这个仓库有用,请引用:

@inproceedings{
li2022languagedriven,
title={Language-driven Semantic Segmentation},
author={Boyi Li and Kilian Q Weinberger and Serge Belongie and Vladlen Koltun and Rene Ranftl},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=RriDjddCLN}
}

致谢

感谢以下项目的代码库:DPTPytorch_lightningCLIPPytorch EncodingStreamlitWandb

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号