Project Icon

sentiment-roberta-large-english-3-classes

基于RoBERTa的英文情感分析模型,精确分类社交媒体情感

该模型使用RoBERTa进行三类情感分类(正面、中性、负面),特别适合社交媒体文本。通过5,304条社交媒体帖子进行微调,达到了86.1%的准确率。可通过transformers库轻松集成,提高文本分类的精准性和效率。

robust-sentiment-analysis - 使用distilBERT的情感分析模型,实现对社交媒体和客户反馈的精确分析
GithubHuggingfacedistilBERT合成数据客户反馈开源项目情感分析模型社交媒体分析
模型基于distilBERT结构并利用合成数据训练,可精确解析社交媒体、客户反馈和产品评价的情感变化。适用于品牌监测、市场研究和客户服务优化,支持五个情感分类,准确率达95%。帮助企业有效识别用户情绪动向。
stackoverflow-roberta-base-sentiment - 软件工程文本情感分析的RoBERTa模型
GithubHuggingfaceRoBERTaStackOverflow开源项目情感分析模型自然语言处理软件工程
stackoverflow-roberta-base-sentiment是一个专门用于软件工程文本情感分析的RoBERTa模型。它基于cardiffnlp/twitter-roberta-base-sentiment模型,使用StackOverflow4423数据集进行微调。该模型能够分析软件工程相关文本的正面、中性和负面情感倾向。通过简单的Python代码,开发者可以快速实现情感分析。这个开源项目为软件开发社区提供了一个分析开发者反馈和讨论的实用工具。
roberta-base-go_emotions - RoBERTa模型实现28种情感多标签分类
GithubHuggingfaceRoBERTago_emotions数据集text-classification多标签分类开源项目情感分析模型
该模型基于roberta-base,利用go_emotions数据集训练而成,可对文本进行28种情感的多标签分类。模型在测试集上实现0.474的准确率和0.450的F1分数。为提升性能,还提供ONNX版本。研究者可通过Hugging Face Transformers框架便捷应用此模型。值得注意的是,某些情感标签如'gratitude'表现优异,F1值超过0.9,而'relief'等标签表现欠佳,可能与训练数据分布不均有关。通过优化每个标签的阈值,模型的整体F1分数可提升至0.541,显示出进一步改进的潜力。
financial-roberta-large-sentiment - RoBERTa架构优化的金融文本情感分析模型
ESGGithubHuggingfaceRoBERTa开源项目情感分析机器学习模型模型金融文本
Financial-RoBERTa是一个基于RoBERTa-Large架构优化的金融文本情感分析模型。它能分析财务报表、盈利公告、业绩电话会议记录等多种金融文本,输出积极、消极或中性的情感判断。模型经过大规模金融语料训练,并提供Hugging Face接口,便于企业和研究人员使用。该模型支持多种金融文档类型,包括10-K、10-Q、8-K报告、CSR报告和ESG新闻等。
emotion_text_classifier - DistilRoBERTa微调的多类情感分析模型
DistilRoBERTaGithubHuggingface开源项目情感分类机器学习模型深度学习自然语言处理
这是一个基于DistilRoBERTa微调的情感分类模型,能够识别文本中的七种情绪,包括六种基本情绪和一种中性情绪。模型在《老友记》剧本数据集上进行了微调,特别适合分析电视剧和电影的对话文本。支持的情绪标签包括愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶,为自然语言处理中的情感分析任务提供了实用工具。
sentiment_analysis_model - BERT模型的情感分析应用
BERTGithubHuggingface开源项目情感分析无监督学习模型模型描述预训练
该情感分析模型基于BERT,在大规模英语语料的自监督训练基础上,具备双向语句理解能力,经过精细调优,专注于文本分类任务,该项目微调BERT模型以进行情感分析,可用于自动提取文本中的情感特征。
roberta-base-finetuned-dianping-chinese - 中文RoBERTa模型用于多领域文本情感和主题分类
GithubHuggingfaceRoBERTaTencentPretrainUER-py开源项目文本分类模型模型微调
该项目包含利用UER-py和TencentPretrain微调的中文RoBERTa-Base模型,用于用户评论和新闻数据的情感及主题分类。模型可通过HuggingFace获取,适用于多种文本分类任务,具备高度的分类精准度。
twitter-roberta-large-hate-latest - 增强的多类别仇恨言论检测模型
GithubHuggingfaceRoBERTaSuperTweetEval仇恨言论检测开源项目推特文本分类模型
此RoBERTa-large模型基于154M推文数据进行训练,并在SuperTweetEval数据集上进行微调,以实现仇恨言论的多类别分类检测。模型能够准确识别多种仇恨类型,包括性别、种族和宗教等,为社交媒体内容管理提供支持。
CentralBankRoBERTa-sentiment-classifier - RoBERTa架构中央银行沟通情感分析模型
CentralBankRoBERTaGithubHuggingface中央银行通讯开源项目情感分析模型自然语言处理金融
CentralBankRoBERTa-sentiment-classifier是一个专门用于分析中央银行沟通的情感分析模型。该模型基于RoBERTa架构,能够识别涉及家庭、企业、金融部门和政府的句子情感。经过大规模数据集微调后,模型准确率达到88%。研究人员可通过Hugging Face Transformers库轻松使用该模型,实现中央银行文本的自动化情感分析。
indonesian-roberta-base-sentiment-classifier - 印尼语RoBERTa情感分类器:高精度的开源NLP工具
GithubHuggingfaceRoBERTa印尼语情感分类开源项目情感分析模型深度学习自然语言处理
这是一个基于RoBERTa架构的印尼语情感分类器,在indonlu的SmSA数据集上微调而成。模型在评估集上展现出卓越性能,准确率达94.36%,F1值达92.42%。它支持多种深度学习框架,易于集成到各类情感分析应用中。作为开源项目,该模型为印尼语自然语言处理领域提供了一个高效可靠的工具,推动了相关研究和应用的发展。模型采用了124M参数的RoBERTa Base架构,在印尼语评论和评论数据上训练。它不仅在评估集上表现优异,在基准测试集上也达到了93.2%的准确率和91.02%的F1值。该项目提供了详细的使用说明和评估结果,方便研究者和开发者快速上手和复现实验。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号