Project Icon

sentiment-roberta-large-english-3-classes

基于RoBERTa的英文情感分析模型,精确分类社交媒体情感

该模型使用RoBERTa进行三类情感分类(正面、中性、负面),特别适合社交媒体文本。通过5,304条社交媒体帖子进行微调,达到了86.1%的准确率。可通过transformers库轻松集成,提高文本分类的精准性和效率。

roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
rubert-tiny2-russian-sentiment - RuBERT-tiny2俄语文本情感分类模型
GithubHuggingfaceRuBERT-tiny2俄语多分类开源项目情感分析模型自然语言处理
RuBERT-tiny2俄语情感分类模型支持中性、积极和消极三类标签。该模型在Kaggle Russian News、Linis Crowd等多个数据集上训练,F1分数0.75,AUC-ROC达0.9。可通过transformers库轻松实现俄语短文本情感分析,适用于需要高效准确俄语情感分析的场景。
albert-base-v2-emotion - ALBERT架构情感分析模型:Twitter数据集微调与性能评估
AlbertGithubHuggingface开源项目情感分析文本分类机器学习模型自然语言处理
albert-base-v2-emotion是一个基于ALBERT架构的情感分析模型,在Twitter情感数据集上进行了微调。该模型在准确率和F1分数方面分别达到93.6%和93.65,展现了优秀的性能。模型训练采用HuggingFace Trainer,使用2e-5学习率、64批量大小和8轮训练。与同类模型相比,albert-base-v2-emotion在性能和处理速度间取得了平衡。开发者可以通过简洁的Python代码集成此模型,轻松实现文本情感分类功能。
roberta_toxicity_classifier - 高效的毒性评论分类模型
AUC-ROCF1-scoreGithubHuggingfaceJigsawRoBERTa开源项目模型毒性分类
该模型专注于毒性评论的分类,使用来自Jigsaw 2018、2019和2020年的数据集训练,包含约200万个英文例子。通过对RoBERTa模型的精细调校,在测试集上表现出色,AUC-ROC达到0.98,F1评分为0.76,是用于识别毒性内容的有效工具。
SocialBERT-social - ESG领域社会文本分类的优化语言模型
ESGGithubHuggingfaceSocialBERT人工智能开源项目模型社会文本分类自然语言处理
SocialBERT-social是专注于ESG领域社会文本分类的高效语言模型。通过在SocialBERT-base基础上利用2k社会数据集进行微调,该模型大幅提升了社会文本识别精度。它与Hugging Face pipeline无缝集成,适用于复杂的ESG分析和风险评估任务。项目还提供了详尽的使用指南和相关论文,为研究者和实践者提供了全面的支持。
roberta-large-NER - XLM-RoBERTa大型模型用于多语言命名实体识别
GithubHuggingfaceXLM-RoBERTa人工智能命名实体识别多语言模型开源项目模型自然语言处理
XLM-RoBERTa-large模型基础上微调的多语言命名实体识别工具,支持100多种语言。在英语CoNLL-2003数据集上训练,可用于命名实体识别和词性标注等标记分类任务。该模型由Facebook AI研究团队开发,具有强大的跨语言能力,但存在潜在偏见和局限性。作为自然语言处理的重要工具,它为多语言文本分析提供了有力支持。
distilbert-base-uncased-emotion - DistilBERT情感分析模型:小巧快速且准确
DistilBERTGithubHugging FaceHuggingface开源项目情感分析文本分类模型自然语言处理
这是一个基于DistilBERT的情感分析模型,体积比BERT小40%,速度更快,同时保持93.8%的准确率。模型可将文本分类为6种情感,每秒处理398.69个样本,性能优于BERT、RoBERTa和ALBERT同类模型。该模型采用情感数据集微调,通过简单pipeline即可快速部署使用。
roberta-base-suicide-prediction-phr - RoBERTa自然语言处理模型实现文本自杀倾向识别
GithubHuggingfaceroberta-base开源项目文本分类模型深度学习自杀倾向预测模型
该模型通过对Reddit社交平台的文本数据进行分析训练,利用RoBERTa自然语言处理技术识别文本中的自杀倾向。测试结果显示模型具有96.5%的准确率、96.6%的召回率和96.4%的精确率。项目采用严格的文本清洗和预处理流程,可应用于心理健康监测领域的自动化分析。
bert-base-multilingual-uncased-sentiment - BERT多语言产品评论情感预测模型
GithubHuggingfacebert-base-multilingual-uncased产品评论准确率多语言模型开源项目情感分析模型
bert-base-multilingual-uncased-sentiment是一个基于BERT的多语言情感分析模型,支持英、荷、德、法、西、意六种语言的产品评论分析。模型通过1至5星评级预测评论情感,在大规模多语言产品评论数据集上训练。测试结果显示,模型在各语言上均达到较高的准确率,特别是在'差一星'的宽松评估标准下,准确率普遍超过93%。该模型可直接应用于目标语言的产品评论情感分析,也可作为相关任务的预训练模型进行进一步微调。
roberta-base-finetuned-autext23 - RoBERTa模型微调版本实现高精度文本分类
GithubHuggingfaceRoBERTa开源项目微调机器学习模型模型评估自然语言处理
roberta-base-finetuned-autext23是基于FacebookAI/roberta-base模型微调的文本分类模型。在评估集上,该模型达到了0.8974的准确率和0.8965的F1分数。模型采用Adam优化器,使用线性学习率调度器,经过5轮训练,批次大小为16。虽然性能优异,但模型的具体应用场景和数据集信息仍需补充。此模型适合需要高精度文本分类的任务,但使用时应注意其潜在限制。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号