Project Icon

RayDiffusion

射线扩散模型在相机姿态估计中的应用

RayDiffusion项目提出了一种将相机表示为射线并应用扩散模型的姿态估计方法。该方法支持已知边界框和从掩码自动提取边界框两种模式,同时提供射线回归选项。项目包含代码实现、预训练模型和使用说明,适用于计算机视觉领域的研究和开发。

将相机视为光线

[arXiv] [项目主页] [引用] [Colab]

本仓库包含"将相机视为光线:基于光线扩散的姿态估计"(ICLR 2024)的代码。

克隆仓库:

git clone --depth=1 --branch=main https://github.com/jasonyzhang/RayDiffusion.git

环境配置

我们建议使用conda环境来管理依赖项。从Pytorch官网安装与您的CUDA版本兼容的Pytorch版本。

conda create -n raydiffusion python=3.10
conda activate raydiffusion
conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=11.8 -c pytorch -c nvidia
conda install xformers -c xformers
pip install -r requirements.txt

然后,按照这里的指示安装Pytorch3D。 我们建议使用对应Python/Pytorch/CUDA版本的预构建轮子安装Pytorch3D:

pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu118_pyt211/download.html

如果使用预构建轮子安装遇到问题,您也可以尝试从源代码构建,但这将花费更长时间。

运行演示

Google Drive下载模型权重。

gdown https://drive.google.com/uc\?id\=1anIKsm66zmDiFuo8Nmm1HupcitM6NY7e
unzip models.zip

使用已知边界框(以json格式提供)运行光线扩散:

python demo.py  --model_dir models/co3d_diffusion --image_dir examples/robot/images \
    --bbox_path examples/robot/bboxes.json --output_path robot.html

使用从掩码自动提取的边界框运行光线扩散:

python demo.py  --model_dir models/co3d_diffusion --image_dir examples/robot/images \
    --mask_dir examples/robot/masks --output_path robot.html

运行光线回归:

python demo.py  --model_dir models/co3d_regression --image_dir examples/robot/images \
    --bbox_path examples/robot/bboxes.json --output_path robot.html

训练

光线扩散的训练命令:

accelerate launch --multi_gpu --gpu_ids 0,1,2,3,4,5,6,7 --num_processes 8 train.py \
    training.batch_size=8 training.max_iterations=450000

有关训练的更详细说明,请参见docs/train.md

评估

有关如何运行评估代码的说明,请参见docs/eval.md

引用将相机视为光线

如果您发现这段代码有帮助,请引用:

@InProceedings{zhang2024raydiffusion,
    title={Cameras as Rays: Pose Estimation via Ray Diffusion},
    author={Zhang, Jason Y and Lin, Amy and Kumar, Moneish and Yang, Tzu-Hsuan and Ramanan, Deva and Tulsiani, Shubham},
    booktitle={International Conference on Learning Representations (ICLR)},
    year={2024}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号