Project Icon

Learning-Scientific_Machine_Learning_Residual_Based_Attention_PINNs_DeepONets

物理信息机器学习在科学计算中的应用与进展

本项目聚焦物理信息神经网络(PINNs)、DeepONets和基于残差的注意力机制(RBA)等科学机器学习技术。内容涵盖从基础概念到高级应用的教程,包括函数逼近、ODE/PDE求解与发现等。项目呈现了PINNs领域的最新研究成果,尤其是RBA在提升性能方面的应用。这些资源对于物理信息机器学习领域的研究人员和工程师具有重要参考价值。

graph-based-deep-learning-literature - 探索基于图的深度学习最新文献与会议进展
GithubICMLNeurIPS图形深度学习开源项目数据挖掘计算机视觉
该项目收录了基于图的深度学习领域内,例如NeurIPS、ICML和ICLR等顶级会议的出版物、相关工作坊、综述文章、书籍以及软件资源链接。这些资源为学术研究人员和专业学者提供了方便的一站式服务,便于他们探索、查询及利用该领域内的最新科研成果和工具。
pytorch-deep-learning - 深入PyTorch的深度学习实用教程
GithubPyTorch开源项目深度学习神经网络计算机视觉迁移学习
本课程涵盖从基础到高级的深度学习概念,通过实践教学与丰富的视频材料,讲解PyTorch操作和应用。包括神经网络分类、计算机视觉和数据集处理等主题,适合希望深化机器学习理解和应用的学习者。课程包括最新的PyTorch 2.0教程,确保内容的时效性和专业性。
AI-Notes - 全面的AI学习资源 从理论到实践的系统指南
AIGithub人工智能开源项目机器学习深度学习神经网络
该项目提供全面的AI学习资源,涵盖机器学习、深度学习和自然语言处理等领域。内容包括数学基础、算法原理及工具应用,从理论到实践构建系统知识。通过Jupyter Notebook和Colab实现互动学习,适合AI初学者和从业者掌握核心概念及最新进展。
intro-to-deep-learning - 全面实用的深度学习入门课程
GithubJupyter NotebookPython开源项目机器学习深度学习神经网络
这是一个面向深度学习初学者的开源项目,提供全面的入门课程。课程内容包括神经网络基础知识的介绍材料、实践演练和扩展资源。采用Jupyter Notebook形式,鼓励学生动手实践以加深理解。课程涵盖深度学习核心概念,为学习者打下扎实基础,为进一步探索高级主题如GAN和NLP做好准备。项目注重理论与实践结合,并提供深入学习资源。项目内容结构清晰,按主题分类组织,每个主题包含概述、预习建议、实践演示和深入学习资源。课程支持本地运行和Google Colab使用两种方式,增加了学习的灵活性。
deep-learning-coursera - 深入学习深度学习并探索人工智能领域
Andrew NgCourseraDeep Learning SpecializationGithubMachine LearningNeural Networks开源项目
Coursera上的深度学习专项课程,帮助学习者掌握神经网络和深度学习的关键概念与技术。课程由知名教授Andrew Ng讲授,涵盖基础神经网络构建、参数优化、卷积神经网络和序列模型的实际应用。课程包括丰富的编程作业和案例研究,帮助学习者通过实践巩固知识。无论初学者还是有经验的开发者,都能通过该课程提升深度学习技能,进入人工智能领域。
paper-reading - 深度学习基础架构与工程应用详细介绍
AI compilerCUDADeep LearningGithub开源项目深度学习框架高性能计算
本页面介绍了深度学习基础架构及其工程应用,包括编程语言、算法训练与推理部署、AI编译器加速和硬件工程。页面提供了Deep Learning、HPC高性能计算等学习资源和工具链接,并涵盖Docker、K8S、Protobuf与gRPC等工程化解决方案。还提供相关教程与代码示例,适合深度学习和高性能计算领域的开发者和研究人员。
dlwpt-code - 深入浅出PyTorch深度学习指南
Deep Learning with PyTorchGithubPyTorch开源项目机器学习深度学习编程
《Deep Learning with PyTorch》通过实际项目展示深度学习的基础知识,适合希望掌握PyTorch的开发者、计算机科学家、数据科学家及相关专业学生。书中提供了对深度学习的直观理解,并深入探讨PyTorch的部分功能,适合具备编程基础的读者。作者团队拥有丰富的实践经验和开源项目贡献,确保内容实用且前沿。
DeepLearning.ai-Summary - DeepLearning.ai课程的详细笔记与总结
DeepLearning.aiGithub卷积神经网络开源项目机器学习项目深度学习神经网络
此页面收录了DeepLearning.ai系列课程的详细笔记和总结,涵盖神经网络、超参数调整、机器学习项目结构、卷积神经网络和序列模型。读者可以通过这些笔记全面了解深度学习的基础知识和实际应用。
awesome-neural-rendering - 全面汇集神经渲染领域最新研究进展
3D重建GithubNeural Rendering开源项目深度学习视图合成计算机图形学
该项目汇集了神经渲染领域的前沿资源,包括逆向渲染、神经重渲染、可微分渲染和隐式神经表示等多个子领域。这份精选列表涵盖了最新研究论文、技术报告和开源项目,为研究人员和开发者提供了全面的参考资料,有助于深入了解神经渲染技术的最新进展。
awesome-deep-learning-music - 深度学习技术在音乐领域的应用及研究进展
AI音乐Deep Learning for MusicGithub开源项目神经网络科学研究音乐信息检索
本项目收录了使用深度学习技术应用于音乐的科学文章、论文和报告,包括音乐生成、语音分离、演讲者识别等任务。项目旨在为音乐信息检索提供资源,含有文章概要、详细信息和代码链接。项目持续更新,欢迎贡献新资源。项目由Yann Bayle基于博士论文的前沿技术评审发起。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号