Project Icon

jina-clip-v1

集成文本图像检索与文本相似度分析的多模态嵌入模型

jina-clip-v1是Jina AI开发的英语多模态嵌入模型,支持高效文本-图像和文本-文本检索。它结合了传统文本嵌入和跨模态模型的优势,适用于多模态检索增强生成应用。该模型在Flickr和MSCOCO跨模态检索任务中表现出色,文本相似度评估能力也与专业文本嵌入模型相当。

CLIP-ViT-bigG-14-laion2B-39B-b160k - CLIP-ViT-bigG-14模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-2BViT-bigG/14开源模型开源项目模型零样本图像分类
CLIP-ViT-bigG-14-laion2B-39B-b160k是基于LAION-2B数据集训练的大规模视觉语言模型。该模型在零样本图像分类、图像文本检索等任务中表现出色,在ImageNet-1k测试中实现80.1%的零样本top-1准确率。模型采用ViT-bigG/14架构,由stability.ai提供计算资源支持。虽然适合研究人员探索零样本分类和跨模态学习,但目前不建议直接应用于商业场景。
vit_large_patch14_clip_224.openai - 探索OpenAI提出的CLIP模型在计算机视觉任务中零样本分类的潜力
CLIPGithubHuggingface偏见公平性开源项目模型计算机视觉零样本学习
OpenAI开发的CLIP模型通过对比损失训练大量的图像与文本对展示了其在计算机视觉任务中实现零样本分类的能力。这一模型尤其适合AI研究人员用以深入理解计算机视觉模型的鲁棒性及泛化能力,同时关注于它的潜在局限与偏见。尽管在细粒度分类和对象计数任务中存在不足,CLIP提供了对于模型在不同任务表现及相关风险的深入认知。需要注意的是,CLIP模型并不适用于商业用途,且其数据训练主要基于英语环境。
siglip-base-patch16-384 - 改进型CLIP架构的图像文本预训练模型
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型深度学习计算机视觉
SigLIP是基于CLIP架构的多模态模型,通过Sigmoid损失函数优化了图像文本预训练过程。模型在WebLI数据集完成预训练,支持零样本图像分类和文本检索任务。其特点是无需全局相似度标准化,既可支持大规模批量训练,也适用于小批量场景。
CLIP-ViT-B-16-DataComp.XL-s13B-b90K - 多模态模型CLIP ViT-B/16的零样本图像分类解析
CLIPGithubHuggingface图像生成开源项目数据集模型训练数据零样本图像分类
CLIP ViT-B/16模采用DataComp-1B数据集训练,并结合OpenCLIP工具,旨在促进研究者对零样本图像分类的理解。该模型在ImageNet-1k数据集上实现了73.5%的零样本准确率,展示了其在多领域研究中的潜力和挑战。由于数据集仍未完全筛选,建议仅限于学术研究使用。
CLIP-convnext_base_w-laion2B-s13B-b82K - ConvNeXt CLIP模型在ImageNet零样本分类中达到70.8%以上准确率
CLIPConvNeXtGithubHuggingfaceLAION-5BOpenCLIP开源项目模型零样本图像分类
这是一系列基于LAION-5B数据集训练的CLIP ConvNeXt-Base模型。经过13B样本训练后,模型在ImageNet零样本分类中实现了70.8%以上的Top-1准确率,显示出比ViT-B/16更高的样本效率。模型使用timm的ConvNeXt-Base作为图像塔,并探索了增强图像增强和正则化的效果。作为首个在CLIP ViT-B/16和RN50x4规模下训练的ConvNeXt CLIP模型,它为零样本图像分类研究提供了新的选择。
CLIP-ViT-B-32-DataComp.XL-s13B-b90K - 基于DataComp-1B训练的CLIP图像分类模型
CLIPDataCompGithubHuggingface人工智能图像分类开源项目机器学习模型
CLIP ViT-B/32是一个使用DataComp-1B数据集训练的图像分类模型,在ImageNet-1k测试中达到72.7%零样本分类准确率。模型支持图像分类、图像文本检索等功能,主要面向多模态机器学习研究使用。
InternVL2-1B - 多模态大语言模型实现多图像和视频智能理解
GithubHuggingfaceInternVL2人工智能多模态大语言模型开源项目模型自然语言处理计算机视觉
InternVL2-1B是一款新型多模态大语言模型,结合了InternViT-300M-448px视觉模型和Qwen2-0.5B-Instruct语言模型。该模型在文档理解、图表分析和场景文字识别等任务中表现优异,能有效处理长文本、多图像和视频输入。InternVL2-1B在开源多模态模型中表现突出,部分能力可与商业模型比肩。通过采用8k上下文窗口训练,该模型大幅提升了处理长输入序列的能力。
siglip-large-patch16-256 - SigLIP模型采用优化损失函数实现图像文本多模态任务
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是CLIP模型的改进版本,使用sigmoid损失函数进行语言-图像预训练。该模型在WebLI数据集上以256x256分辨率预训练,适用于零样本图像分类和图像-文本检索任务。通过优化损失函数,SigLIP实现了更高性能和更大批量规模。模型支持原始使用和pipeline API调用,在多项评估中展现出优于CLIP的表现。SigLIP为图像-文本多模态任务提供了新的解决方案。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
AI视觉CLIPDIVAGithub开源项目扩散模型迁移学习
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
VLM2Vec-Full - 视觉语言模型VLM2Vec的多模态嵌入训练方法
GithubHuggingfaceTIGER-LabVLM2Vec多模态嵌入对比学习开源项目模型视觉语言模型
VLM2Vec在Phi-3.5-V模型中引入EOS标记,实现跨多模态输入的统一嵌入表达,高效结合文本与图像。通过对比学习在MMEB-train数据集上训练,并在36个数据集上进行评估,Lora训练方式表现最佳。项目提供模型检查点及完整训练记录,供用户在GitHub仓库克隆下载,通过代码实现文本与图像的嵌入和相似度计算,助力模型运用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号