Project Icon

jina-embeddings-v2-base-zh

基于Transformer的中文文本向量模型,适用于语义检索和相似度计算

基于Transformer架构的中文文本向量模型,支持句子相似度计算、文本分类、检索和重排序功能。在MTEB中文基准测试中完成了医疗问答、电商等领域的评估,支持中英双语处理,采用Apache-2.0开源许可证。

gte-small - 基于ONNX权重的Transformers.js模型嵌入及余弦相似度计算
GithubHuggingfaceJavaScriptONNXTransformers.js开源项目模型特征提取相似度计算
本项目介绍了使用ONNX权重与Transformers.js库计算模型嵌入和余弦相似度的过程。通过安装Transformers.js库,可以轻松地创建特征提取管道,并进行句子嵌入和相似度计算。项目默认采用8位量化模型,同时支持全精度版本。ONNX模型为未来的WebML应用做好了准备,建议通过Optimum工具进行ONNX格式转换以实现网络兼容。
jina-reranker-v1-tiny-en - 快速文本重排序解决方案,支持最长8192个token处理
ALiBiGithubHuggingfaceJina AIreranker开源项目文本分类模型知识蒸馏
jina-reranker-v1-tiny-en在JinaBERT模型基础上通过知识蒸馏技术实现高效文本重排序,支持最长8192个token的处理,适用于高速度需求场景,并确保结果的准确性。提供多种接入方式,包括Jina AI Reranker API、sentence-transformers库及transformers.js等。该模型表现优异,确保搜索结果的相关性和准确性。
snowflake-arctic-embed-m-v1.5 - 基于Transformers的句子相似度检索模型
GithubHuggingfacesentence-transformers句子相似度开源项目检索任务模型模型评估特征提取
snowflake-arctic-embed-m-v1.5是基于Transformers.js开发的句子相似度模型,主要应用于文本检索和特征提取。该模型采用sentence-transformers架构,在MTEB ArguAna等基准测试中主要评估指标达到59.53,能够提供准确的文本匹配和检索功能。
bge-base-en-v1.5 - 增强文本处理能力的多任务学习模型
GithubHuggingfacesentence-transformers分类句子相似性句子聚类开源项目模型特征提取
bge-base-en-v1.5模型通过多任务学习优化自然语言处理技术,覆盖分类、检索、聚类和重排任务。在多个MTEB数据集上表现优异,例如在亚马逊情感分类任务中达到93.39%的准确率,在AskUbuntu重排任务中MRR达到74.28%。该模型具有MIT开源许可,适用于多种英语任务,为研究人员和开发者提供有效支持。
bge-multilingual-gemma2 - 基于Gemma 2架构的多语言文本嵌入模型
GithubHuggingfaceMTEB句子相似度多语言开源项目检索模型评估指标
bge-multilingual-gemma2是基于Gemma 2架构开发的多语言文本嵌入模型。该模型在MTEB NFCorpus、MSMARCO、FiQA2018等多个检索任务数据集上表现优异。它能有效处理多语言文本并生成高质量语义表示,适用于信息检索、句子相似度计算等自然语言处理任务。在MTEB FEVER数据集上,该模型的主要评分达90.38,展现出较强的检索能力。
roberta-large-nli-stsb-mean-tokens - 基于RoBERTa的大规模语义相似度计算和文本嵌入模型
GithubHuggingfacesentence-transformers向量化开源项目模型模型嵌入自然语言处理语义相似度
这是一个基于RoBERTa的sentence-transformers模型,可将文本映射至1024维向量空间。它支持句子相似度计算、文本聚类和语义搜索等任务,并提供简便的API接口。该模型可通过sentence-transformers或HuggingFace Transformers库使用,便于获取文本嵌入。然而,由于性能已过时,建议采用更新的预训练模型替代。
multi-qa-mpnet-base-cos-v1 - 面向语义搜索的句子向量化模型
GithubHuggingfacesentence-transformers开源项目文本嵌入机器学习模型自然语言处理语义搜索
multi-qa-mpnet-base-cos-v1是一个基于sentence-transformers的语义搜索模型。该模型将句子和段落映射为768维向量,通过215M个多样化问答对训练而成。它支持句子相似度计算和特征提取,适用于信息检索和问答系统等应用。模型提供简洁API,可使用点积或余弦相似度计算文本相似度。
open-text-embeddings - 使用多源模型的OpenAI API兼容文本向量生成工具
GithubLangChainOpenAI APIembeddingsopen-text-embeddingssentence-transformers开源项目
该项目创建了与OpenAI API兼容的文本向量生成端点,支持多种开源句子转换模型,包括BAAI/bge-large-en、intfloat/e5-large-v2、sentence-transformers等。提供详细的本地和云端部署指南,方便用户在多种环境下运行服务器,实现高效查询与存储。用户也可通过Colab在线测试,体验开源文本向量生成的便捷性。
paraphrase-albert-base-v2 - 基于ALBERT的句子嵌入模型用于文本聚类和语义搜索
GithubHuggingfacesentence-transformers向量计算开源项目文本嵌入模型自然语言处理语义搜索
这是一个基于ALBERT架构的句子嵌入模型,可将文本映射至768维向量空间。该模型支持sentence-transformers和HuggingFace Transformers两种集成方式,适用于文本聚类、语义搜索等任务。通过平均池化处理,模型能高效生成文本向量表示,尤其适合需要计算句子相似度的应用场景。
bge-base-zh-v1.5 - 文本低维向量映射提升中文检索与分类效率
FlagEmbeddingGithubHuggingface句子相似性向量检索对比学习嵌入模型开源项目模型
FlagEmbedding是一个开源项目,可将文本转换为低维密集向量,用于多种任务,如检索、分类和语义搜索。bge-base-zh-v1.5版本优化了相似度分布,没有指令也能提升检索能力。支持中文和英文的处理,并与大型语言模型(LLM)无缝集成,bge-reranker交叉编码器模型为文档重新排名提供高精度结果。此外,最新的LLM-Embedder满足多样化检索增强需求,使用户在大数据环境中更高效地完成检索和分类。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号