Project Icon

pomegranate

Python 中快速、灵活且易于使用的概率建模

新版本将计算后端从Cython迁移到PyTorch,提升了速度和灵活性。新特性包括GPU支持、半精度计算、多变量分布、缺失值处理以及更好的社区贡献。改进后的pomegranate在混合模型、贝叶斯网络和隐马尔科夫模型的构建中表现出色,实现了高度的灵活性和效率。

PowerInfer - 消费级GPU上大型语言模型高效推理引擎
GPU加速GithubPowerInfer大语言模型局部性设计开源项目混合CPU/GPU使用
PowerInfer是一款在个人电脑上针对消费级GPU设计的高效大型语言模型(LLM)推理引擎。它结合激活局部性原理和CPU/GPU混合技术,通过优化热/冷激活神经元的处理方式,显著提高推理速度并降低资源消耗。软件还融入了适应性预测器和神经元感知技术,优化了推理效率和精度,支持快速、低延迟的本地模型部署。
Ensemble-Pytorch - PyTorch集成学习框架助力模型优化
Ensemble-PyTorchGithubpytorch开源项目机器学习模型集成深度学习
Ensemble-Pytorch是一个为PyTorch设计的集成学习框架,旨在提高深度学习模型的性能和鲁棒性。该框架支持多种集成策略,如Fusion、Voting、Bagging和Gradient Boosting,适用于分类和回归任务。作为PyTorch生态系统的一部分,Ensemble-Pytorch提供简洁的API和详细文档,便于研究人员和开发者实现和优化集成模型。
fortuna - 不确定性量化的开源库
AWS SageMakerBayesian推理FortunaGithub不确定性量化开源项目深度学习
Fortuna是一个专用于不确定性量化的开源库,适用于需要做出关键决策的场景。它提供了从预训练模型和深度学习模型进行校准和共形的方法,并支持多种贝叶斯推断方法。通过简单直观的语言和高度配置的特性,用户可以轻松运行基准测试并将不确定性引入生产系统。Fortuna支持从不确定性估算、模型输出以及Flax模型三种模式,确保预测结果的可靠性。详见官方文档和示例。
ppl.nn - 用于 AI 推理的高性能深度学习推理引擎
GithubONNXOpenMMLabPPLNN卷积神经网络开源项目深度学习推理
PPLNN是一款高效的深度学习推理引擎,兼容各种ONNX模型,并对OpenMMLab进行了优化。其最新的LLM引擎包括闪存注意力、分裂K注意力、动态批处理和张量并行等功能,并支持INT8分组和通道量化。项目发布了多个LLM模型,如LLaMA、ChatGLM和Baichuan,并提供详细的构建和集成指南。
PINTO_model_zoo - 提供多框架神经网络模型转换与量化的开源工具
GithubONNXPINTO_model_zooPyTorchTensorFlow开源项目量化
PINTO_model_zoo 是一个开源工具库,支持 TensorFlow、PyTorch、ONNX、OpenVINO 等多个框架的模型转换和量化。项目提供多种量化方法,包括权重量化、整数量化和浮点数量化,旨在优化模型性能以适应不同平台,如 RaspberryPi 和 EdgeTPU。它还提供大量预量化模型和详细转换指南,帮助开发者在各种设备上高效部署深度学习模型。
POMDPs.jl - Julia语言的马尔可夫决策过程求解接口
GithubJuliaMDPPOMDPs决策过程开源项目强化学习
POMDPs.jl是Julia语言中用于处理马尔可夫决策过程(MDP)和部分可观测马尔可夫决策过程(POMDP)的核心接口包。它为表达问题、编写求解器和运行仿真提供了统一的编程接口。该项目支持多种求解器和工具包,适用于离散和连续问题。POMDPs.jl集成了多个相关生态系统,并提供详细文档和教程,是一个处理决策不确定性的综合框架。
pytorch-forecasting - 前沿的时间序列预测工具包,提供灵活的高层API
GithubPyTorch ForecastingPyTorch Lightning开源项目时间序列预测深度学习神经网络
PyTorch Forecasting 是一个基于 PyTorch 的时间序列预测包,适用于实际应用和研究。它支持多种神经网络架构及自动日志记录,利用 PyTorch Lightning 实现多 GPU/CPU 的扩展训练,并内置模型解释功能。关键特性包括时间序列数据集类、基本模型类、增强的神经网络架构、多视角时间序列指标和超参数优化。安装简便,支持 pip 和 conda,文档详尽,并包含模型比较和使用案例。
honeybee - 优化多模态大语言模型性能的局部性增强投影器
GithubHoneybee多模态大语言模型局部性增强投影器开源项目深度学习计算机视觉
Honeybee项目通过局部性增强投影器提升多模态大语言模型性能。该项目在MMB、MME、SEED-I等基准测试中表现优异,提供预训练和微调模型检查点。Honeybee支持多种数据集,包含详细的数据准备、训练和评估指南,为多模态AI研究和开发提供开源工具。
ppq - 多功能的神经网络量化工具
GithubOnnxPPQTensorRT开源项目神经网络量化量化优化
PPQ 是一个适用于工业应用的神经网络量化工具。通过将浮点运算转换为定点运算,它显著提升系统功耗效率和执行速度。具备高度扩展性,用户可自定义量化过程,并结合多种硬件和推理库使用。版本 0.6.6 更新了图模式匹配、图融合功能,并新增 FP8 量化规范和 PFL 基础类库。支持 TensorRT, Openvino, Onnxruntime 等推理框架,实现高效的神经网络量化部署。
pygmo2 - 大规模并行优化Python库
GithubPython库pygmo优化算法并行计算开源项目科学计算
pygmo是一个开源的、用于大规模并行优化的科学Python库。它围绕提供优化算法和优化问题的统一接口而构建,使其易于在大规模并行环境中部署。该库支持多目标优化和多种优化算法,能够高效处理复杂的优化问题和大规模数据。pygmo提供了全面的文档和教程,适用于研究、教学以及各种实际应用场景。其强大的功能和灵活性使其成为解决复杂优化挑战的理想工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号