Project Icon

k-means-constrained

K均值聚类算法的约束优化实现

k-means-constrained库为K均值聚类算法引入了簇大小约束功能。它巧妙地将簇分配问题转化为最小成本流问题,并借助Google OR-Tools的C++实现高效求解。作为scikit-learn KMeans的扩展,该库保持了兼容的API设计,适合需要精确控制簇规模的聚类应用场景。支持Python 3.8+环境,可通过pip便捷安装。

PyPI Python Build Documentation

k-means-constrained

K-means clustering implementation whereby a minimum and/or maximum size for each cluster can be specified.

This K-means implementation modifies the cluster assignment step (E in EM) by formulating it as a Minimum Cost Flow (MCF) linear network optimisation problem. This is then solved using a cost-scaling push-relabel algorithm and uses Google's Operations Research tools's SimpleMinCostFlow which is a fast C++ implementation.

This package is inspired by Bradley et al.. The original Minimum Cost Flow (MCF) network proposed by Bradley et al. has been modified so maximum cluster sizes can also be specified along with minimum cluster size.

The code is based on scikit-lean's KMeans and implements the same API with modifications.

Ref:

  1. Bradley, P. S., K. P. Bennett, and Ayhan Demiriz. "Constrained k-means clustering." Microsoft Research, Redmond (2000): 1-8.
  2. Google's SimpleMinCostFlow C++ implementation

Installation

You can install the k-means-constrained from PyPI:

pip install k-means-constrained

It is supported on Python 3.8 and above.

Example

More details can be found in the API documentation.

>>> from k_means_constrained import KMeansConstrained
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
...                [4, 2], [4, 4], [4, 0]])
>>> clf = KMeansConstrained(
...     n_clusters=2,
...     size_min=2,
...     size_max=5,
...     random_state=0
... )
>>> clf.fit_predict(X)
array([0, 0, 0, 1, 1, 1], dtype=int32)
>>> clf.cluster_centers_
array([[ 1.,  2.],
       [ 4.,  2.]])
>>> clf.labels_
array([0, 0, 0, 1, 1, 1], dtype=int32)
Code only
from k_means_constrained import KMeansConstrained
import numpy as np
X = np.array([[1, 2], [1, 4], [1, 0],
                [4, 2], [4, 4], [4, 0]])
clf = KMeansConstrained(
     n_clusters=2,
     size_min=2,
     size_max=5,
     random_state=0
 )
clf.fit_predict(X)
clf.cluster_centers_
clf.labels_

Time complexity and runtime

k-means-constrained is a more complex algorithm than vanilla k-means and therefore will take longer to execute and has worse scaling characteristics.

Given a number of data points $n$ and clusters $c$, the time complexity of:

  • k-means: $\mathcal{O}(nc)$
  • k-means-constrained1: $\mathcal{O}((n^3c+n^2c^2+nc^3)\log(n+c)))$

This assumes a constant number of algorithm iterations and data-point features/dimensions.

If you consider the case where $n$ is the same order as $c$ ($n \backsim c$) then:

  • k-means: $\mathcal{O}(n^2)$
  • k-means-constrained1: $\mathcal{O}(n^4\log(n)))$

Below is a runtime comparison between k-means and k-means-constrained whereby the number of iterations, initializations, multi-process pool size and dimension size are fixed. The number of clusters is also always one-tenth the number of data points $n=10c$. It is shown above that the runtime is independent of the minimum or maximum cluster size, and so none is included below.

Data-points vs execution time for k-means vs k-means-constrained. Data-points=10*clusters. No min/max constraints

System details
  • OS: Linux-5.15.0-75-generic-x86_64-with-glibc2.35
  • CPU: AMD EPYC 7763 64-Core Processor
  • CPU cores: 120
  • k-means-constrained version: 0.7.3
  • numpy version: 1.24.2
  • scipy version: 1.11.1
  • ortools version: 9.6.2534
  • joblib version: 1.3.1
  • sklearn version: 1.3.0
---

1: Ortools states the time complexity of their cost-scaling push-relabel algorithm for the min-cost flow problem as $\mathcal{O}(n^2m\log(nC))$ where $n$ is the number of nodes, $m$ is the number of edges and $C$ is the maximum absolute edge cost.

Citations

If you use this software in your research, please use the following citation:

@software{Levy-Kramer_k-means-constrained_2018,
author = {Levy-Kramer, Josh},
month = apr,
title = {{k-means-constrained}},
url = {https://github.com/joshlk/k-means-constrained},
year = {2018}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号