Project Icon

bert-base-uncased-conll2003

基于BERT的CoNLL-2003数据集命名实体识别模型

此模型是基于bert-base-uncased在CoNLL-2003数据集上微调的命名实体识别模型。经过2轮训练,模型在测试集上展现出优秀性能:精确率达0.8885,召回率为0.9046,F1分数为0.8965,准确率高达0.9781。模型采用Adam优化器和线性学习率调度器,为NLP领域提供了一个高效的命名实体识别解决方案。

bcms-bertic-ner - BERTić微调模型实现BCMS语言的高效命名实体识别
BERTićGithubHuggingface命名实体识别巴尔干语言开源项目机器学习模型自然语言处理
bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。
roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
bert-base-indonesian-NER - BERT模型驱动的印度尼西亚语命名实体识别系统
GithubHuggingfaceMIT印尼语开源项目标记分类模型许可证语言
bert-base-indonesian-NER是一个基于BERT架构的印度尼西亚语命名实体识别模型。该模型经过优化,能够准确识别印尼语文本中的人名、地名和组织机构等实体。作为印尼语自然语言处理的重要工具,此项目为本地化NLP技术的发展提供了有力支持。
bert-base-multilingual-cased-finetuned-langtok - 基于多语言BERT的语言识别模型实现99.03%准确率
BERTGithubHuggingface多语言模型开源项目微调模型自然语言处理语言识别
这是一个基于bert-base-multilingual-cased的语言识别微调模型。模型在评估集上的准确率为99.03%,F1分数达到0.9087。模型采用Adam优化器和线性学习率调度器,经过3轮训练完成。开发框架使用Transformers 4.44.2和PyTorch 2.4.1,可应用于语言识别相关任务。
roberta-large-NER - XLM-RoBERTa大型模型用于多语言命名实体识别
GithubHuggingfaceXLM-RoBERTa人工智能命名实体识别多语言模型开源项目模型自然语言处理
XLM-RoBERTa-large模型基础上微调的多语言命名实体识别工具,支持100多种语言。在英语CoNLL-2003数据集上训练,可用于命名实体识别和词性标注等标记分类任务。该模型由Facebook AI研究团队开发,具有强大的跨语言能力,但存在潜在偏见和局限性。作为自然语言处理的重要工具,它为多语言文本分析提供了有力支持。
bert-base-japanese-v3-ner-wikipedia-dataset - 基于维基百科数据集的日语命名实体识别BERT模型
BERTGithubHuggingfaceWikipedia数据集固有表現認識大规模语言模型开源项目模型自然语言处理
本项目提供了一个基于BERT的日语命名实体识别模型,该模型使用维基百科数据集进行训练。模型能够识别日语文本中的人名、地名等实体,可通过Transformers库轻松调用。项目源自《大规模语言模型入门》一书,提供了使用示例和相关资源链接,采用Apache 2.0许可证。
nb-bert-base-ner - 挪威语BERT命名实体识别模型 适用NorNE数据集
BERTGithubHuggingfaceNorNE命名实体识别开源项目挪威语模型自然语言处理
nb-bert-base-ner是一个基于BERT的挪威语命名实体识别模型,通过NorNE数据集微调而成。此模型能够识别挪威语文本中的人名、地名等命名实体。开发者可借助Hugging Face的transformers库轻松集成和使用,项目还提供了简洁的示例代码,便于快速实现挪威语命名实体识别功能。
indobert-model-ner - IndobertNER:基于BERT的印度尼西亚语命名实体识别模型
GithubHuggingfaceIndoBERT命名实体识别开源项目模型模型微调深度学习自然语言处理
IndobertNER是基于indolem/indobert-base-uncased模型微调的印度尼西亚语命名实体识别模型。在评估集上,该模型展现出优秀性能,精确率达0.8307,召回率为0.8454,F1分数为0.8380。模型训练采用Adam优化器,使用线性学习率调度器,经过10轮迭代。虽然目前缺乏具体应用指南,但IndobertNER在印度尼西亚语自然语言处理领域具有广阔应用前景。
bert-base-multilingual-cased-pos-english - BERT多语言模型优化后的英文词性标注应用
BERTGithubHuggingfacePenn TreeBanktransformers多语言开源项目模型词性标注
该模型为多语言BERT,经过特别优化用于英语的词性标注,基于Penn TreeBank训练,达成96.69的F1得分。使用者可以通过transformers管道快速应用此模型,并结合AutoTokenizer和AutoModelForTokenClassification进行高效处理。该模型已在NAACL'22大会的研究成果中使用,适合于高需求精度的词性标注任务,尤其在专业和学术领域。描述中应注重客观性,避免主观夸大。
bert-base-swedish-cased - 瑞典国家图书馆发布的BERT预训练语言模型用于提升瑞典语文本处理
GithubHuggingfaceHuggingface TransformersSwedish BERT命名实体识别开源项目模型瑞典文献预训练语言模型
瑞典国家图书馆推出的预训练BERT和ALBERT语言模型,适用于瑞典语文本处理。bert-base-swedish-cased采用标准参数优化,适合各种文本源;bert-base-swedish-cased-ner专注于命名实体识别;albert-base-swedish-cased-alpha为尝试版ALBERT模型。全部模型支持大小写区分与整体词遮盖功能,并提供PyTorch版本供下载。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号