Project Icon

bert-base-uncased-conll2003

基于BERT的CoNLL-2003数据集命名实体识别模型

此模型是基于bert-base-uncased在CoNLL-2003数据集上微调的命名实体识别模型。经过2轮训练,模型在测试集上展现出优秀性能:精确率达0.8885,召回率为0.9046,F1分数为0.8965,准确率高达0.9781。模型采用Adam优化器和线性学习率调度器,为NLP领域提供了一个高效的命名实体识别解决方案。

bert-base-multilingual-cased - BERT多语言预训练模型覆盖104种语言
BERTGithubHuggingface多语言模型开源项目模型深度学习自然语言处理预训练
bert-base-multilingual-cased是基于104种语言Wikipedia数据预训练的BERT模型。通过掩码语言建模和下一句预测实现自监督学习,可用于微调多种NLP任务。该模型支持多语言处理,适用于序列分类、标记分类和问答等应用,为NLP研究和开发提供了强大的多语言基础。
eccobert-base-cased-v1 - 专为18世纪英国文献分析打造的ECCO-BERT模型
BERTECCOGithubHuggingface历史文献开源项目机器学习模型自然语言处理
ECCO-BERT base model (cased)是一款基于18世纪英国出版物数字化数据集ECCO训练的BERT模型。该模型与bert-base-cased规模相当,适用于ECCO数据集相关的多种任务微调。作为一种专门的自然语言处理工具,ECCO-BERT能够帮助研究人员更深入地分析18世纪英国文献,为历史文本研究和文化探索提供有力支持。
bert-base-german-dbmdz-uncased - 支持不区分大小写文本处理的德语BERT预训练模型
BERTGithubHuggingface开源项目德语无大小写区分机器学习模型自然语言处理
这是一个专为德语设计的BERT预训练模型,主要特点是支持不区分大小写的文本处理。模型针对德语特点进行了优化,适用于各类德语自然语言处理任务,采用MIT许可证发布。该模型与dbmdz/bert-base-german-uncased模型相同,详细信息可参考其模型卡片。
distilbert-base-cased - DistilBERT:轻量高效的BERT模型,保留核心性能
BERTDistilBERTGithubHuggingface开源项目机器学习模型自然语言处理预训练模型
DistilBERT base model (cased)是BERT base model的轻量版本,通过知识蒸馏技术实现了模型压缩。它在BookCorpus和维基百科上进行自监督预训练,在保持核心性能的同时大幅减小了模型体积,加快了推理速度。这个模型主要用于微调下游NLP任务,如序列分类、标记分类和问答等。在GLUE基准测试中,DistilBERT展现出与原始BERT相当的性能,为需要效率与性能平衡的NLP应用提供了理想选择。
nbailab-base-ner-scandi - 斯堪的纳维亚语言的命名实体识别模型
GithubHuggingfaceScandiNER北欧语言命名实体识别开源项目数据集模型模型性能
这个模型是NbAiLab/nb-bert-base的精调版本,适用于丹麦语、挪威语、瑞典语、冰岛语和法罗语的命名实体识别(NER)。通过整合DaNE、NorNE、SUC 3.0和WikiANN的一些数据集,模型可以提供高精度的NER结果,并支持多种语言包括英语。识别的实体类型包括人名、地名、组织名及其他类别。模型以Micro-F1得分约为89%的表现,以及4.16样本/秒的处理速度表现出色,同时模型体积合理,带来好的准确性和效率平衡。
bert-base-german-cased - 高性能德语BERT模型助力自然语言处理应用
BERTGithubHugging FaceHuggingface开源项目德语模型模型深度学习自然语言处理
此德语BERT模型由巴伐利亚州立图书馆MDZ团队开发,基于维基百科、EU Bookshop等多源语料库训练而成。模型包含23.5亿个词元,提供大小写敏感和不敏感版本,支持PyTorch-Transformers框架。它适用于各类德语自然语言处理任务,在Hugging Face模型库开源,并获得Google TensorFlow Research Cloud支持。
deberta-base-mnli - DeBERTa模型在MNLI任务上的微调版本
DeBERTaGithubHuggingface开源项目微软机器学习模型神经网络自然语言处理
deberta-base-mnli是一个在MNLI任务上微调的DeBERTa基础模型。DeBERTa通过解耦注意力和增强掩码解码器改进了BERT和RoBERTa。该模型在SQuAD和MNLI等基准测试中表现优异,在大多数自然语言理解任务中超越了BERT和RoBERTa的性能。它为自然语言处理研究和应用提供了有力支持。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
ner-german-large - Flair框架驱动的德语大规模命名实体识别模型
FlairGithubHuggingfaceNER开源项目德语命名实体识别机器学习模型自然语言处理
这是一个基于Flair框架的德语大规模命名实体识别(NER)模型。它可识别人名、地名、组织名和其他名称四类实体。模型结合了文档级XLM-R嵌入和FLERT技术,在CoNLL-03德语修订版数据集上获得92.31的F1分数。研究者可通过Flair库轻松调用此模型进行NER任务。项目同时提供了使用示例和训练脚本,便于进一步开发和优化。
pytorch-bert-crf-ner - PyTorch实现的BERT-CRF韩文命名实体识别器
BERTCRFGithubKoBERTNERPytorch开源项目
该项目是一个用PyTorch实现的BERT和CRF结合的韩文命名实体识别器,适用于PyTorch v1.2及Python 3.x环境。通过实际案例和详细日志展示该识别器的使用方法及其高效的韩文命名实体识别能力。借助于SKTBrain的KoBERT模型,本项目实现了容易上手的BERT-CRF命名实体识别系统。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号