chat-miner: turn your chats into artwork
chat-miner provides lean parsers for every major platform transforming chats into dataframes. Artistic visualizations allow you to explore your data and create artwork from your chats.
1. Installation
Latest release including dependencies can be installed via PyPI:
pip install chat-miner
If you're interested in contributing, running the latest source code, or just like to build everything yourself:
git clone https://github.com/joweich/chat-miner.git
cd chat-miner
pip install -r requirements.txt
2. Exporting chat logs
Have a look at the official tutorials for WhatsApp, Signal, Telegram, Facebook Messenger, or Instagram Chats to learn how to export chat logs for your platform.
3. Parsing
Following code showcases the WhatsAppParser
module.
The usage of SignalParser
, TelegramJsonParser
, FacebookMessengerParser
, and InstagramJsonParser
follows the same pattern.
from chatminer.chatparsers import WhatsAppParser
parser = WhatsAppParser(FILEPATH)
parser.parse_file()
df = parser.parsed_messages.get_df(as_pandas=True) # as_pandas=False returns polars dataframe
Note: Depending on your source system, Python requires to convert the filepath to a raw string.
import os
FILEPATH = r"C:\Users\Username\chat.txt" # Windows
FILEPATH = "/home/username/chat.txt" # Unix
assert os.path.isfile(FILEPATH)
4. Visualizing
import chatminer.visualizations as vis
import matplotlib.pyplot as plt
4.1 Heatmap: Message count per day
fig, ax = plt.subplots(2, 1, figsize=(9, 3))
ax[0] = vis.calendar_heatmap(df, year=2020, cmap='Oranges', ax=ax[0])
ax[1] = vis.calendar_heatmap(df, year=2021, linewidth=0, monthly_border=True, ax=ax[1])
4.2 Sunburst: Message count per daytime
fig, ax = plt.subplots(1, 2, figsize=(7, 3), subplot_kw={'projection': 'polar'})
ax[0] = vis.sunburst(df, highlight_max=True, isolines=[2500, 5000], isolines_relative=False, ax=ax[0])
ax[1] = vis.sunburst(df, highlight_max=False, isolines=[0.5, 1], color='C1', ax=ax[1])
4.3 Wordcloud: Word frequencies
fig, ax = plt.subplots(figsize=(8, 3))
stopwords = ['these', 'are', 'stopwords']
kwargs={"background_color": "white", "width": 800, "height": 300, "max_words": 500}
ax = vis.wordcloud(df, ax=ax, stopwords=stopwords, **kwargs)
4.4 Radarchart: Message count per weekday
if not vis.is_radar_registered():
vis.radar_factory(7, frame="polygon")
fig, ax = plt.subplots(1, 2, figsize=(7, 3), subplot_kw={'projection': 'radar'})
ax[0] = vis.radar(df, ax=ax[0])
ax[1] = vis.radar(df, ax=ax[1], color='C1', alpha=0)
5. Natural Language Processing
5.1 Add Sentiment
from chatminer.nlp import add_sentiment
df_sentiment = add_sentiment(df)
5.2 Example Plot: Sentiment per Author in Groupchat
df_grouped = df_sentiment.groupby(['author', 'sentiment']).size().unstack(fill_value=0)
ax = df_grouped.plot(kind='bar', stacked=True, figsize=(8, 3))
6. Command Line Interface
The CLI supports parsing chat logs into csv files. As of now, you can't create visualizations from the CLI directly.
Example usage:
$ chatminer -p whatsapp -i exportfile.txt -o output.csv
Usage guide:
usage: chatminer [-h] [-p {whatsapp,instagram,facebook,signal,telegram}] [-i INPUT] [-o OUTPUT]
options:
-h, --help
Show this help message and exit
-p {whatsapp,instagram,facebook,signal,telegram}, --parser {whatsapp,instagram,facebook,signal,telegram}
The platform from which the chats are imported
-i INPUT, --input INPUT
Input file to be processed
-o OUTPUT, --output OUTPUT
Output file for the results