Project Icon

DeBERTa-v3-FaithAug

基于DeBERTa的知识对话系统可靠性评估模型

DeBERTa-v3-FaithAug是一个基于DeBERTa-v3架构的自然语言推理模型,通过ANLI数据增强方式进行微调,用于知识对话系统的可靠性评估。模型在原有DeBERTa-v3-large-mnli-fever-anli-ling-wanli基础上优化,提供开源代码和评分接口。该版本相比论文中的原始模型具有更优的平均性能表现。

deberta-xlarge-mnli - 高性能自然语言处理模型面向多任务学习优化
BERTDeBERTaGithubHuggingface人工智能开源项目机器学习模型自然语言处理
DeBERTa-xlarge-mnli是一个经过MNLI任务微调的大型语言模型。该模型采用解耦注意力机制和增强型掩码解码器,在多项NLU任务中表现优异。它在SQuAD、GLUE基准测试等任务上的成绩超越了BERT和RoBERTa,为复杂的自然语言理解应用提供了强大支持。
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 - mDeBERTa-v3模型实现多语言自然语言推理和零样本分类
GithubHuggingfacemDeBERTa-v3多语言开源项目机器学习模型自然语言推理零样本分类
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7是一个支持100种语言的自然语言推理和零样本分类模型。它基于mDeBERTa-v3-base架构,通过XNLI和multilingual-NLI-26lang-2mil7数据集微调,包含27种语言的270多万个文本对。该模型在XNLI和英语NLI测试中表现优异,展现出卓越的跨语言迁移能力,为多语言NLP任务提供了强大解决方案。
deberta-v3-large-squad2 - DeBERTa V3大规模模型设计,问答任务表现卓越
GithubHaystackHuggingfaceSQuAD 2.0deberta-v3-large开源项目提取式问答模型问答
该DeBERTa模型基于SQuAD2.0数据集进行了微调,专注于提取式问答任务。通过Haystack和Transformers框架的整合,模型在检索和匹配性能上表现优异,经多种数据集验证显示出高准确性。
deberta-v3-small - 微软开发的高效轻量级预训练语言模型 实现出色NLP性能
DeBERTaGithubHuggingface开源项目微调模型注意力机制自然语言处理预训练语言模型
DeBERTa-v3-small是微软开发的轻量级预训练语言模型,采用ELECTRA风格预训练和梯度解耦嵌入共享技术。该模型仅有44M参数,在SQuAD 2.0和MNLI等NLU任务上表现优异,接近或超越部分更大模型。DeBERTa-v3-small为追求效率与性能兼顾的NLP应用提供了新选择。
deberta-v3-large_boolq - DeBERTa-v3-large模型在真假问答任务中实现88.35%准确率
DeBERTaGithubHuggingface开源项目文本分类机器学习模型模型微调自然语言处理
本项目基于DeBERTa-v3-large模型,在boolq数据集上进行微调,专注于真假问答分类任务。模型在评估集上达到88.35%的准确率,可处理多样化的真假问题。支持批量处理问题-上下文对,输出每个问题的真假概率。为自然语言处理和问答系统研究提供了有力支持。
deberta-large-mnli - 基于DeBERTa架构的MNLI微调大型语言模型
BERTDeBERTaGithubHuggingface开源项目模型模型性能注意力机制自然语言处理
DeBERTa-large-mnli是一个针对MNLI任务微调的大型语言模型,基于DeBERTa架构开发。该模型采用解耦注意力机制和增强型掩码解码器,在多数自然语言理解任务中表现优于BERT和RoBERTa。在SQuAD和GLUE等基准测试中,DeBERTa-large-mnli展现出优异性能。这个模型适用于各种自然语言理解应用,可为NLP研究提供有力支持。
deberta-small-long-nli - DeBERTa-v3微调长文本自然语言推理模型
DeBERTa-v3-smallGithubHuggingface多任务学习开源项目文本分类模型自然语言推理零样本分类
这是一个基于DeBERTa-v3-small在250多个NLP任务上微调的长文本自然语言推理模型。支持1680个token的上下文长度,在多项NLI基准测试中表现优异。可用于零样本分类、自然语言推理及下游任务微调。在逻辑推理、概率推理和长文本NLI等任务上性能出色,是一个功能强大的NLP工具。
mdeberta-v3-base - DeBERTa V3架构多语言模型助力跨语言NLU任务
DeBERTaGithubHuggingface多语言模型开源项目模型深度学习自然语言处理预训练模型
mdeberta-v3-base是基于DeBERTa V3架构的多语言预训练模型,使用2.5T CC100数据训练。在XNLI跨语言迁移任务中,其平均准确率达79.8%,显著超越XLM-R。模型采用梯度解耦嵌入共享和ELECTRA式预训练,增强下游任务表现。结构包含12层transformer,768维隐藏层,共2.76亿参数。适用于多语言自然语言理解任务,尤其在低资源语言中表现出色。
deberta-v3-xsmall - 轻量级高性能自然语言处理模型
DeBERTaGithubHuggingface开源项目微软机器学习模型自然语言处理预训练模型
DeBERTa-v3-xsmall是一个参数量仅为2200万的轻量级自然语言处理模型。该模型采用ELECTRA风格预训练和梯度解耦嵌入共享技术,在SQuAD 2.0和MNLI等任务上表现出色。它在保持高效性的同时,显著提升了下游任务性能,适用于资源受限的自然语言理解应用场景。
nli-deberta-v3-large - 高效实现自然语言推断的跨编码器
GithubHuggingfaceNatural Language Inference准确性句子分类开源项目无监督分类模型模型训练
nli-deberta-v3-large是一个基于microsoft/deberta-v3-large的跨编码器模型,专用于自然语言推断。该模型在SNLI和MultiNLI数据集上训练,并能够为句子对提供矛盾、蕴涵和中性三种标签的概率评分。模型在SNLI测试集上实现了92.20的准确率,在MNLI不匹配集上达到90.49的准确率,支持零样本分类,适合多种自然语言处理应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号