Project Icon

n-levels-of-rag

RAG应用开发全面指南 从入门到精通

本项目是一个全面的RAG应用开发指南,涵盖基础到高级的多个层次。内容包括核心概念讲解、高级技术介绍、可观察性实践、评估方法和性能优化策略等。适合各层次开发者学习,提供实用知识助力RAG应用开发。

local-rag - 开源离线增强生成系统,支持多源数据和流式响应
GithubLLMs支持Local RAG开源软件开源项目数据安全离线嵌入
Local RAG是一个开源离线增强生成工具,旨在无需第三方依赖即可处理多种数据源(包含本地文件、GitHub仓库与网站)。该系统通过集成大型语言模型安全高效地处理数据,支持离线嵌入技术、流式数据响应、会话历史记忆和会话数据导出,尤其适合对隐私要求高的使用环境。
self-rag - 通过自反学习使语言模型实现按需检索、生成和评估的框架
GithubSelf-RAG关键词生成开源项目检索增强生成自我反思语言模型
Self-RAG是一种创新框架,通过自反学习使语言模型实现按需检索、生成和评估。该方法预测反思标记,支持多次检索或跳过检索,并从多角度评估生成内容。这不仅提高了模型输出的事实性和质量,还保持了语言模型的通用性能。
Project-Guidance - 多语言开源项目集合 涵盖初级到高级水平
GitHubGithubProject-Guidance学习资料开源项目编程资源
Project-Guidance是一个多语言开源项目集合,涵盖从初级到高级水平的各类项目。该项目为开发者提供了一个集中查找和贡献项目的平台,包括人工智能、桌面应用、物联网、机器学习、移动应用和Web开发等领域。Project-Guidance旨在帮助开发者找到合适的项目,并鼓励开源贡献。除了代码,该项目还欢迎文档、测试和建议等多种形式的贡献。
RAGFoundry - 开源框架增强大语言模型检索能力
GithubRAG Foundry大语言模型开源项目数据集创建检索增强生成模型微调
RAG Foundry是一个开源框架,通过RAG增强数据集微调模型来提升大语言模型的外部信息检索能力。该框架包含数据集创建、模型训练、推理和评估四个模块,支持快速原型设计和RAG实验。其模块化设计和可定制工作流程,有助于研究人员和开发者高效改进LLM的检索增强生成能力。
rag-experiment-accelerator - 增强搜索实验效能的全新Azure AI工具
Azure AI SearchGithubOpenAIRAG Experiment Accelerator实验工具开源项目性能优化
RAG Experiment Accelerator是一款面向研究人员、数据科学家和开发者的多功能工具,旨在利用Azure AI Search和RAG模式提升搜索查询实验和评估的效率。主要功能包括实验设定、Azure服务集成、搜索索引创建、多种文档加载器支持、自定义查询生成、多种搜索类型支持,以及细致的结果评估,且全程自动生成报告。最新的更新增加了内容采样功能,确保实验样本的代表性。
RAGxplorer - 视觉化检索增强生成(RAG)工具的开创者
GithubRAGxplorerRetrieval Augmented GenerationStreamlit使用安装开源项目
RAGxplorer是开源工具,旨在为检索增强生成(RAG)技术提供直观的视觉化展示。该工具支持PDF文档的分析和查询,提供包括Jupyter和Colab在内的多种教程,适用于数据呈现与分析。
rag_api - 基于FastAPI的异步文档索引与检索框架
FastAPIGithubLangchainRAG向量数据库嵌入式检索开源项目
这是一个基于FastAPI和Langchain的异步文档索引和检索框架。它利用PostgreSQL/pgvector进行向量存储,按文件ID组织嵌入向量。该框架提供文档管理、向量存储和异步操作功能,可集成到LibreChat或应用于其他ID导向的场景。支持多种向量数据库和嵌入模型,并包含详细的配置指南。
GNN-RAG - 结合图神经网络和检索增强生成的知识图谱问答方法
GNN-RAGGithub图神经网络大语言模型开源项目检索增强生成知识图谱问答
GNN-RAG项目探索了图神经网络在大语言模型推理中的应用。该方法在密集子图上进行推理,检索候选答案和推理路径,结合了GNN的结构化推理和LLM的自然语言处理能力。项目提供了GNN实现和基于RAG的LLM问答系统的代码,以及实验结果。研究表明,这种方法在知识图谱问答任务中具有提升性能的潜力。
dialog - 简化RAG部署与AI模型训练的应用
API开发GithubOpen-WebUIRAG部署talkd/dialog人性化RAG开源项目
Dialog是为对API开发不熟悉但感兴趣于AI的程序员设计的应用,旨在使用现代框架简化RAG部署。通过提供基于dialog-lib的LLM部署结构,Dialog重点在于人性化RAG回答并扩展其应用范围。使用Docker快速启动,支持PostgresSQL数据库,适配Open-WebUI前端界面。详细教程和全面文档可帮助用户快速上手并高效训练AI模型。
llm-app - 企业动态RAG,多数据源同步
AI应用GPTGithubLLM AppPathwayRAG开源项目
Pathway的LLM应用让高精度RAG AI应用快速上线,使用最新数据源。支持文件系统、Google Drive、Sharepoint、S3、Kafka、PostgreSQL等多种数据源的连接和同步,无需额外基础设施。提供多种模板,扩展至数百万页文档,满足不同需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号