Project Icon

Meta-Llama-3.1-8B-Instruct-awq-4bit

高效4位量化的大型指令模型 适用GPU推理

Meta-Llama-3.1-8B-Instruct模型的4位量化版本,采用AutoAWQ技术实现。This Kaitchup开发的这一版本旨在提高GPU推理效率,在保持原始性能的同时显著降低内存占用。适合在资源受限环境中运行,项目页面提供了量化过程、评估结果及使用方法的详细信息。

Llama-3.2-3B-Instruct-uncensored-GGUF - 多硬件兼容的Llama-3.2量化模型
ARM推理GithubHuggingfaceLlama-3.2-3B-Instruct-uncensored嵌入权重开源项目数据集模型量化
LLama-3.2-3B-Instruct模型经过imatrix量化处理,确保在多种硬件配置(如ARM架构)下的高效表现。可在LM Studio中运行并支持多种格式选择,以满足不同内存和性能要求。通过huggingface-cli下载特定文件或全集成,方便易用。K-quants和I-quants提供多样化速度与性能的选择,是研究及开发人员的灵活工具。用户反馈能有效提升量化模型的适用性。
Llama-3.2-3B-Instruct-Q8_0-GGUF - Llama 3.2系列8位量化指令型语言模型
GGUFGithubHuggingfaceLlama-3Metallama.cpp开源项目模型语言模型
Llama-3.2-3B-Instruct-Q8_0-GGUF是Meta的Llama 3.2系列中经8位量化并转换为GGUF格式的指令微调模型。支持多语言文本生成,可通过llama.cpp在CPU或GPU上运行。模型提供命令行和服务器使用方式,适用于对话和文本生成任务。作为轻量级但功能强大的语言模型,适合开发者和研究人员使用。
Llama-3.1-Nemotron-70B-Instruct-HF-GGUF - Llama-3.1-Nemotron-70B多级量化模型适配不同硬件
GPUGithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF人工智能开源项目模型语言模型量化
该项目为Llama-3.1-Nemotron-70B-Instruct-HF模型提供多种量化版本,涵盖Q8_0至IQ1_M级别。针对不同硬件和性能需求,项目提供详细的文件选择指南,并包含模型提示格式及下载方法说明。用户可根据设备选择适合的版本,便于快速部署和使用。
Meta-Llama-3-70B-Instruct-GGUF - Meta Llama 3模型的量化选项及其更新动态
GithubHuggingfaceMeta Llama 3license协议使用政策开源项目模型法律责任知识产权
Meta Llama 3项目提供多种语言模型量化选项,结合llama.cpp发布版b3259,优化模型性能及存储。项目文件涵盖多规格量化选择,适合不同应用需求,如高质量的Q8_0与Q6_K。创新如f32到f16转换提升了数据处理效果。许可协议和使用政策严格遵循法律规定,确保模型安全合规使用。
Llama-2-13B-chat-AWQ - 增强Transformer模型推理效率的AWQ量化技术
GithubHuggingfaceLlama 2Meta对话优化开源项目文本生成模型模型量化
Llama-2-13B-chat-AWQ项目利用AWQ低比特量化提高Transformer模型推理效率,支持4比特量化技术,相较于传统GPTQ方法,能更快速地实现多用户并发推理,降低硬件要求和部署成本。AWQ现已兼容vLLM平台进行高吞吐量推理,尽管总体吞吐量较未量化模型略有不如,但可通过较小的GPU实现高效部署,比如70B模型仅需一台48GB GPU即可运行。
Llama-3.2-1B-Instruct-GGUF - Llama 3.2模型的多精度量化版本
GithubHuggingfaceLlama人工智能开源开源项目模型语言模型量化
Llama-3.2-1B-Instruct-GGUF是Llama 3.2模型的量化版本,使用llama.cpp和imatrix方法进行处理。该项目提供从f16到Q3_K_XL多种精度选项,文件大小在0.80GB至2.48GB之间。这些模型支持多语言处理,适合在资源受限的设备上运行,用户可根据需求选择合适版本以平衡性能和资源占用。
Llama-3.2-1B-Instruct-q4f16_1-MLC - 高性能量化指令模型用于MLC-LLM和WebLLM项目
GithubHuggingfaceLlama-3.2-1B-InstructMLC-LLM人工智能大语言模型开源项目模型聊天机器人
Llama-3.2-1B-Instruct模型的MLC格式q4f16_1版本,适用于MLC-LLM和WebLLM项目。支持命令行聊天、REST服务器部署和Python API调用。模型采用量化技术,在保持性能的同时减小体积,适合多种设备高效推理。可通过简单命令或代码快速部署使用。
Meta-Llama-3-8B-Instruct-FP8 - FP8量化版Meta Llama 3实现内存占用减半
FP8量化GithubHuggingfaceMeta-Llama-3vLLM大语言模型开源项目模型模型优化
这是一个通过8位浮点(FP8)量化技术优化的Meta Llama 3模型,在仅占用原模型一半存储空间和GPU内存的同时,保持了99.28%的性能水平。模型基于vLLM后端运行,支持英语对话场景下的商业及研究应用,可用于构建AI助手等应用。
Llama-3.2-3B-Instruct-uncensored-GGUF - 3B参数指令微调语言模型的高效GGUF量化版本
GGUFGithubHuggingfaceLlama人工智能开源项目模型量化
Llama-3.2-3B-Instruct-uncensored模型的GGUF量化版本,提供从1.6GB到7.3GB不等的多种量化类型。量化后的模型大小显著减小,便于部署使用,同时尽可能保持原模型性能。项目包含详细的量化版本说明、使用指南和常见问题解答,有助于用户选择适合的版本。
Meta-Llama-3.1-8B-Instruct-abliterated - Llama 3.1 8B指令模型的无限制版本优化语言生成能力
GithubHuggingfaceLlama 3.1人工智能开源项目无审查模型模型自然语言处理语言模型
Meta-Llama-3.1-8B-Instruct-abliterated是一个经过abliteration技术处理的Llama 3.1 8B指令模型。该模型移除了内容限制,同时保持了原有性能。在IFEval、BBH等多项评测任务中表现优异。目前提供多种量化版本,便于在各类设备上部署。这个模型为研究人员提供了一个探索大型语言模型潜力的新选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号