Project Icon

yolov5n-license-plate

基于YOLOv5的轻量级车牌检测模型

基于YOLOv5架构开发的轻量级车牌检测模型,通过pip快速安装部署。模型支持自定义参数配置,包括置信度阈值和IoU阈值调节,并集成了数据增强功能。提供完整的模型加载、推理和微调接口,可用于实际车牌检测场景,在验证集上展现出较高的检测精度。

yolov5m-license-plate - 车牌检测的YOLOv5模型支持Pytorch适用于多种视觉任务
GithubHuggingfacePyTorchYOLOv5开源项目模型深度学习目标检测车牌识别
YOLOv5m-license-plate项目提供基于YOLOv5技术的车牌检测模型,利用Pytorch进行对象检测,适用于多种计算机视觉任务。开发者可运用简单的Python代码实现精准车牌识别,并支持通过自定义数据集进行微调以提升效果。在keremberke数据集上的精度高达0.988,适合快速、可靠的车牌检测应用。访问项目主页获取更多信息和下载。
yolos-small-finetuned-license-plate-detection - 车牌识别微调模型提升物体检测能力
GithubHuggingfaceYOLOS开源项目模型模型微调目标检测视觉Transformer车牌识别
YOLOS小型模型经过微调适用于车牌检测,使用5200张图片进行训练,并在380张图片上验证,实现49.0的平均精度。模型支持PyTorch平台,并通过Python代码执行对象检测与边界框预测。其此前版本曾在ImageNet-1k和COCO 2017数据集上进行训练,具备卓越的识别性能。
persian-license-plate-recognition - 波斯车牌快速精准识别
GithubPersian License Plate RecognitionYOLOv5图像识别实时处理开源项目深度学习
利用先进的深度学习模型和友好界面,实现高精度的波斯车牌识别。适用于交通监控和自动车辆识别,支持实时视频流处理与管理。
license_plate_recognizer - 精准识别车牌文字的OCR模型,适合自动化监控应用
GithubHuggingfaceLicense Plate RecognitionOCRTransformer模型字符错误率开源项目模型自动监控
此模型基于微软的trocr-base-handwritten,专门开发用于从车牌图像中提取文本,特别适用于OCR车牌识别任务,字符错误率为0.0036,适合各类车辆自动化监控系统。利用TrOCR模型并在PawanKrGunjan/license_plates数据集上微调,能高效将图像转换为文本。在低光或者低分辨率下,性能可能下降,且可能会受到不同地区车牌设计差异的影响。
yolov5 - 视觉AI对象检测和图像分类技术
YOLOv5,一款由Ultralytics开源的视觉AI模型,支持对象检测、图像分割与分类。提供全面文档及社区支持,适合各级用户使用,并定期更新以集成最新技术。
Vehicle-Detection - 深度学习与YOLO算法实现的车辆检测系统
GithubYOLO算法开源项目数据集模型训练深度学习车辆检测
Vehicle-Detection项目结合深度学习和YOLO算法实现车辆检测。项目提供完整工作流程,涵盖数据集准备、模型训练和测试。采用YOLOv5预训练模型微调,集成wandb工具监控性能。项目包含自定义车辆数据集,并提供详细的安装、训练和测试指南。
deep-license-plate-recognition - 基于深度学习的多功能车牌识别系统
ALPRAPIGithub图像处理开源项目机器学习车牌识别
deep-license-plate-recognition是一个基于深度神经网络的自动车牌识别系统。该项目可在复杂环境下准确识别车牌,支持90多个国家,能识别车辆类型、品牌、型号和颜色。系统提供REST API接口,兼容多种编程语言和操作系统平台。适用于停车场管理、道路监控等场景,并提供免费试用。
End-to-end-for-chinese-plate-recognition - 中文车牌识别与矫正的解决方案
CNNEnd-to-end-for-chinese-plate-recognitionGithubTensorFlowU-Net开源项目车牌识别
项目基于u-net、cv2和卷积神经网络(cnn),使用tensorflow和keras实现。功能包括中文车牌的定位、矫正和识别。通过u-net进行图像分割,cv2进行边缘检测和车牌区域矫正,再用cnn实现多标签端到端识别。测试表明,系统在拍摄角度倾斜、强曝光和昏暗环境下表现出色,甚至对某些百度AI未能识别的车牌也能识别。请确保输入图片尺寸小于240x80,以获得最佳识别效果。详情请参阅CSDN博客。
YOLOv5-Lite - 轻量级高性能目标检测模型的优化与部署
GithubYOLOv5-Liteablation实验开源项目性能优化模型比较部署
YOLOv5-Lite通过优化YOLOv5模型实现了轻量化、加速推理和简化部署。通过消融实验减少了Flops、内存占用和参数,并采用Shuffle Channel和YOLOv5 Head降低Channels。在Raspberry Pi 4B上输入320×320帧能达到至少10+ FPS。该项目提供各种测试模型和对比结果,展示在多种硬件平台上的性能,并包含详细的教程和下载链接。
yolov10x - 高效的实时端到端物体检测工具
GithubHuggingfacePyTorchYOLOv10对象检测开源项目模型深度学习计算机视觉
YOLOv10是一个高效的端到端物体检测开源项目,支持在COCO等数据集上进行准确的训练和验证。通过整合PyTorch模型资源,用户可简便地安装和应用。本项目支持从预训练模型进行迁移学习,适合多种计算机视觉应用需求,是追求速度与精度的理想选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号