Project Icon

roberta-base

基于大规模韩语数据集的RoBERTa预训练语言模型

RoBERTa-base是KLUE(Korean Language Understanding Evaluation)项目开发的韩语预训练模型,基于BertTokenizer分词器构建,支持transformers库直接调用。作为韩语语言理解评估框架的基础模型,主要应用于韩语自然语言处理任务和相关研究工作。

roberta-base-nli-mean-tokens - RoBERTa句子嵌入模型实现文本向量化映射
GithubHuggingfaceRoBERTasentence-transformers向量嵌入开源项目模型自然语言处理语义相似度
roberta-base-nli-mean-tokens是一个基于sentence-transformers的句子嵌入模型,可将文本映射至768维向量空间。该模型基于RoBERTa架构,采用平均池化策略,适用于聚类和语义搜索等任务。虽然已被更新的模型取代,但其实现方法仍有参考价值。开发者可通过sentence-transformers或Hugging Face Transformers库轻松使用该模型生成文本嵌入。
xlm-roberta-xxl - 基于2.5TB数据训练的100语言自然语言处理模型
GithubHuggingfaceXLM-RoBERTa-XL多语言模型开源项目机器学习模型自然语言处理预训练模型
XLM-RoBERTa-XXL是一个基于2.5TB CommonCrawl数据预训练的多语言Transformer模型,支持100种语言的自然语言处理任务。通过掩码语言建模技术实现句子的双向表示学习,适用于序列分类、标记分类、问答等下游任务的微调,可应用于多语言文本分析和跨语言任务场景。
xlm-roberta-xl - 基于2.5TB数据训练的100语种自然语言处理模型
GithubHuggingfaceXLM-RoBERTa-XL多语言模型开源项目机器学习模型自然语言处理预训练模型
XLM-RoBERTa-XL是基于2.5TB CommonCrawl数据训练的大规模多语言模型,支持100种语言的自然语言处理。该模型采用掩码语言建模进行自监督学习,适用于序列分类、标记分类和问答等需要理解整句上下文的任务。XLM-RoBERTa-XL为多语言NLP研究和应用提供了强大的基础,但不适合文本生成类任务。
ruBert-base - 专为俄语遮蔽填充任务优化的Transformer预训练语言模型
GithubHuggingfacePyTorchTransformersruBert开源项目模型自然语言处理语言模型
ruBert-base是一个专为俄语遮蔽填充任务优化的预训练语言模型。该模型基于Transformer架构,由SberDevices团队开发,采用BPE分词器,词典大小12万token,模型参数量1.78亿。模型使用30GB训练数据,是俄语自然语言处理领域的重要研究成果。ruBert-base遵循Apache-2.0许可证,为俄语NLP应用提供了强大的基础支持。
stsb-roberta-base - RoBERTa基础句子转换模型用于语义分析和文本聚类
GithubHuggingfaceRoBERTasentence-transformers开源项目模型特征提取自然语言处理语义相似度
stsb-roberta-base是一个基于RoBERTa的句子转换模型,能将文本映射到768维向量空间。该模型支持语义搜索和文本聚类等任务,使用方便,可快速生成句子嵌入。尽管在某些基准测试中表现不错,但官方已将其标记为过时模型,不建议在生产环境中使用。
kogpt2-base-v2 - 推动韩语自然语言处理的开源模型
GithubHuggingfaceKoGPT2人工智能开源项目模型自然语言处理韩语模型
KoGPT2(kogpt2-base-v2)是SKT-AI团队开发的韩语GPT-2模型,采用开源方式发布,使用cc-by-nc-sa-4.0许可证。该模型在文本生成、对话系统等多个韩语自然语言处理任务中表现优异。KoGPT2为韩语AI研究和应用提供了重要工具,推动了韩语NLP技术的发展。研究者和开发者可通过GitHub了解更多详情,探索KoGPT2在韩语处理领域的应用潜力。
roberta-base-nli-stsb-mean-tokens - RoBERTa句子嵌入模型实现语义搜索与文本聚类
GithubHuggingfacesentence-transformers向量嵌入开源项目模型特征提取自然语言处理语义相似度
roberta-base-nli-stsb-mean-tokens是一个基于RoBERTa的句子嵌入模型,可将文本映射至768维向量空间。该模型适用于语义搜索和文本聚类等任务,支持通过sentence-transformers或Hugging Face Transformers库调用。虽然已被更新模型取代,但它仍展示了句子嵌入技术的核心原理和应用场景。
ukr-roberta-base - 乌克兰文HuggingFace模型的语料库预训练
GithubHuggingFaceHuggingfaceUkrainian Wikipediaukr-roberta-base开源项目模型训练数据语言模型
该项目使用乌克兰语言的多种语料库,并结合HuggingFace的Roberta分词器进行了处理。所使用的语料包括乌克兰维基百科、OSCAR数据集及社交网络样本。通过V100硬件加速的方法,预训练出与roberta-base-cased架构类似的模型,拥有12层、768个隐藏单元和125M参数。有关详细的训练配置和技术细节,请参阅原始项目。
bertweet-base - BERTweet为英文推文提供预训练大规模语言模型
BERTweetGithubHuggingfaceRoBERTa开源项目推特模型自然语言处理预训练语言模型
BERTweet是针对英文推文预训练的开源大规模语言模型。该模型基于RoBERTa架构,使用8.5亿条英文推文进行训练,包括与COVID-19相关的推文。BERTweet在词性标注、命名实体识别、情感分析和讽刺检测等任务中表现出色。作为处理Twitter数据的基础工具,BERTweet可应用于多种自然语言处理任务,为研究人员提供了宝贵的资源。
mmlw-roberta-large - 增强自然语言处理适用性的多任务学习模型
GithubHuggingfacesentence-transformers句子相似度开源项目文本分类模型特征提取聚类
该开源项目mmlw-roberta-large通过多任务学习提高了自然语言处理性能,尤其在句子相似性、分类和检索等任务上表现突出。模型适用于多种数据集,如MTEB AllegroReviews和MTEB ArguAna-PL,实现了较高的准确率和F1值。使用了sentence-transformers和transformers技术,确保在大规模数据集上的优异表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号