Project Icon

aRtsy

R语言生成艺术工具包

aRtsy是一个R语言包,为生成艺术提供了简单易用的工具。它包含多种算法,如Langton蚂蚁、分形火焰、流场和迷宫等,用于创作具有随机性的艺术作品。每种算法都有独立的函数和可调参数,涵盖迭代、几何和监督等不同类型的艺术生成方法。aRtsy为数字艺术创作者提供了丰富的创作可能性。

CRAN R_build_status Codecov Bugs Total Licence

aRtsy: Generative Art with R and ggplot2

logo

"If you laugh at a joke, what difference does it make if subsequently you are told that the joke was created by an algorithm?" - Marcus du Sautoy, The Creative Code

aRtsy aims to make generative art accessible to the general public in a straightforward and standardized manner. The package provides algorithms for creating artworks that incorporate some form of randomness and are dependent on the set seed. Each algorithm is implemented in a separate function with its own set of parameters that can be tweaked.

Good luck hunting for some good seed's!

Artwork of the day

Every 24 hours this repository randomly generates and tweets an artwork from the aRtsy library. The full collection of daily artworks is available on the twitter feed and the mastodon feed. This is today's artwork:

Installation

The most recently released version of aRtsy can be downloaded from CRAN by running the following command in R:

install.packages("aRtsy")

Alternatively, you can download the development version from GitHub using:

devtools::install_github("koenderks/aRtsy")

After installation, the aRtsy package can be loaded with:

library(aRtsy)

Note: Render times in RStudio can be quite long for some artworks. It is therefore recommended that you save the artwork to a file (e.g., .png or .jpg) before viewing it. You can save the artwork in an appropriate size and quality using the saveCanvas() function.

artwork <- canvas_strokes(colors = c("black", "white"))
saveCanvas(artwork, filename = "myArtwork.png")

Available artworks

The Iterative collection

The Geometric collection

The Supervised collection

The Static collection

The Iterative collection

The Iterative collection implements algorithms whose state depend on the previous state. These algorithms mostly use a grid based canvas to draw on. On this grid, each point represents a pixel of the final image. By assigning a color to these points according to certain rules, one can create the images in this collection.

Langton's ant

According to Wikipedia, Langton's ant is a turmite with a very specific set of rules. In particular, after choosing a starting position the algorithm involves repeating the following three rules:

  1. On a non-colored block: turn 90 degrees clockwise, un-color the block, move forward one block,
  2. On a colored block: turn 90 degrees counter-clockwise, color the block, move forward one block,
  3. If a certain number of iterations has passed, choose a different color which corresponds to a different combination of these rules.

You can use the canvas_ant() function to make your own artwork using this algorithm.

set.seed(1)
canvas_ant(colors = colorPalette("house"))
# see ?canvas_ant for more input parameters of this function

Chladni figures

This function draws Chladni figures on the canvas. It works by generating one or multiple sine waves on a square matrix. You can provide the waves to be added yourself. After generating the waves it is possible to warp them using a domain warping technique. The angles and distances for the warp can be set manually or according to a type of noise.

You can use the canvas_chladni() function to make your own artwork using this algorithm.

set.seed(1)
canvas_chladni(colors = colorPalette("tuscany1"))
# see ?canvas_chladni for more input parameters of this function

Cobwebs

This function draws a lines in a structure that resemble cobwebs. The algorithm creates many Fibonacci spirals shifted by random noise from a normal distribution.

You can use the canvas_cobweb() function to make your own artwork using this algorithm.

set.seed(1)
canvas_cobweb(colors = colorPalette("tuscany1"))
# see ?canvas_cobweb for more input parameters of this function

Collatz conjecture

The Collatz conjecture is also known as the 3x+1 equation. The algorithm draws lines according to a simple rule set:

  1. Take a random positive number.
  2. If the number is even, divide it by 2.
  3. If the number is odd, multiply the number by 3 and add 1.
  4. Repeat to get a sequence of numbers.

By visualizing the sequence for each number, overlaying sequences that are the same, and bending the edges differently for even and odd numbers in the sequence, organic looking structures can occur.

You can use the canvas_collatz() function to make your own artwork using this algorithm.

set.seed(1)
canvas_collatz(colors = colorPalette("tuscany3"))
# see ?canvas_collatz for more input parameters of this function

Fractal flames

This function implements the Fractal Flame algorithm described in this article by Scott Draves and Erik Reckase. It iterates a set of randomly determined function systems following one or multiple specific variations to determine a set of points. You can specify which variations from the article to include in the flame, what type of symmetry to include, whether to blend the variations using weights or to pick a single variation for each iteration, whether to apply a post transformation and whether to apply a final transformation (optionally including an additional posttransformation). The final image can either be based on a the origin of the attractors or on the log density of the hit count of each pixel (for a more rigid look).

You can use the canvas_flame() function to make your own artwork using this algorithm.

set.seed(2)
canvas_flame(colors = colorPalette("dark2"))
# see ?canvas_flame for more input parameters of this function

Flow fields

This artwork implements a version of the algorithm described in the blog post Flow Fields by Tyler Hobbs. It works by creating a grid of angles and determining how certain points will flow through this field. The angles in the field can be set manually or according to the predictions of a supervised learning method trained on randomly generated data.

You can use the canvas_flow() function to make your own artwork using this algorithm.

set.seed(1)
canvas_flow(colors = colorPalette("dark2"))
# see ?canvas_flow for more input parameters of this function

Lissajous curves

This function draws Lissajous curves and subsequently connects the points on the curve to its k-nearest neighbors. The function is inspired by the Lissajous curves implemented in Marcus Volz's mathart package but adds colors into the mix.

You can use the canvas_lissajous() function to make your own artwork using this algorithm.

set.seed(1)
canvas_lissajous(colors = colorPalette("blossom"))
# see ?canvas_lissajous for more input parameters of this function

Mazes

This artwork creates mazes. The mazes are created using a random walk algorithm (described in the mazegenerator repository). The mazes can also be displayed with polar coordinates, creating some pretty cool effects.

You can use the canvas_maze() function to make your own artwork using this algorithm.

set.seed(1)
canvas_maze(color = "#fafafa")
# see ?canvas_maze for more input parameters of this function

Meshes

This artwork creates one or more rotating circular morphing meshes on the canvas. The idea behind this artwork is described in this blogpost by Dan Gries with the simple words: "deformed circles move across the canvas, and trace out these shapes". The circle has a three random components at each time step: the center, the radius, and the increase in the radius.

You can use the canvas_mesh() function to make your own artwork using this algorithm.

set.seed(1)
canvas_mesh(color = "#000000")
# see ?canvas_mesh for more input parameters of this function

Petri dishes

This artwork uses a space colonization algorithm (excellently described in this blogpost by Jason Webb) to draw Petri dish colonies. If you add a hole in the middle of the Petri dish, the colony grows around the hole.

You can use the canvas_petri() function to make your own artwork using this algorithm.

set.seed(1)
canvas_petri(colors = colorPalette("sooph"))
# see ?canvas_petri for
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号